
Real-Time Workshop® Embedded Coder 4
Developing Embedded Targets

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Embedded Coder Developing Embedded Targets

© COPYRIGHT 2002–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 2002 Online only Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)
September 2006 Online only Revised for Version 4.5 (Release 2006b)
March 2007 Online only Revised for Version 4.6 (Release 2007a)

Contents

Introduction

1
Prerequisites . 1-2

Related Documentation . 1-3

Embedded Target Implementations to Study 1-4

Overview of Embedded Target Development

2
Introduction . 2-2

Types of Targets . 2-3
Introduction . 2-3
Baseline Targets . 2-3
Turnkey Production Targets . 2-4
HIL Simulation Targets . 2-4
PIL Cosimulation Targets . 2-4

Recommended Features for Embedded Targets 2-6
Basic Target Features . 2-6
Integration with Target Development Environments 2-7
Observing Execution of Target Code 2-8
Deployment and Hardware Issues . 2-8

v

Target Development Mechanics

3
Components of a Custom Target . 3-2

Overview . 3-2
Code Components . 3-3
Control Files . 3-5

Understanding and Using the Build Process 3-9
Introduction . 3-9
Build Process Phases and Information Passing 3-9
Build Process Flowchart . 3-11
Additional Information Passing Techniques 3-16

Target Directories, Paths, and Files

4
Introduction . 4-2

Directory and File Naming Conventions 4-3

Target Directory Structure and MATLAB Path 4-4
Overview . 4-4
Adding Target Directories to the MATLAB Path 4-4
Location of Target Directories . 4-5

Target Directories and Files . 4-6
Target Root Directory (mytarget) . 4-6
Target Directory (mytarget/mytarget) 4-6
Target Block Directory (mytarget/blocks) 4-6
Development Tools Directory (mytarget/dev_tool1,

mytarget/dev_tool2) . 4-9
Target Preferences Directory

(mytarget/mytarget/@mytarget) . 4-10
Target Source Code Directory (mytarget/src) 4-10

Files in the Target Directory . 4-11

vi Contents

mytarget.tlc . 4-11
mytarget.tmf . 4-12
mytarget_default_tmf.m . 4-12
mytarget_settings.tlc . 4-12
mytarget_genfiles.tlc . 4-13
mytarget_main.c . 4-13
STF_make_rtw_hook.m . 4-13
STF_wrap_make_cmd_hook.m . 4-14
STF_rtw_info_hook.m (obsolete) . 4-17
info.xml . 4-17
mytarget_overview.html . 4-18

Additional Directories and Files for Externally
Developed Targets . 4-19
mytarget/mytarget/mytarget_setup.m 4-19
mytarget/mytarget/doc . 4-19

System Target Files

5
Introduction . 5-2

System Target File Naming and Location
Conventions . 5-3

System Target File Structure . 5-4
Overview . 5-4
Header Comments . 5-7
TLC Configuration Variables . 5-9
TLC Program Entry Point and Related %includes 5-10
RTW_OPTIONS Section . 5-11
rtwgensettings Structure . 5-19
Additional Code Generation Options 5-21
Model Reference Considerations . 5-21

Defining and Displaying Custom Target Options 5-22
Upgrading Custom Targets to Release 14 or Later 5-22
Using rtwoptions Callbacks in Release 14 or Later 5-22
Target Options Inheritance in Release 14 or Later 5-26

vii

Target Options Display in Release 14 or Later 5-28

Tips and Techniques for Customizing Your STF 5-31
Introduction . 5-31
Required and Recommended %includes 5-31
Inherited Target Options . 5-35
Supporting Multiple Development Environments 5-36

Tutorial: Creating a Custom Target Configuration 5-38
Introduction . 5-38
my_ert_target Overview . 5-38
Creating Target Directories . 5-40
Create ERT-Based STF . 5-40
Create ERT-Based TMF . 5-46
Create Test Model and S-Function . 5-47
Verify Target Operation . 5-48

Template Makefiles

6
Template Makefiles and Tokens . 6-2

Template Makefile Tokens . 6-2

make Command . 6-8
Make Utilities . 6-8

Structure of the Template Makefile 6-9

Customizing and Creating Template Makefiles 6-12
Introduction . 6-12
Setting Up a Template Makefile . 6-12
Using Macros and Pattern Matching Expressions in a

Template Makefile . 6-15
Using rtwmakecfg Files to Customize the Makefile 6-17
Supporting Continuous Time in Custom Targets 6-20
Model Reference Considerations . 6-21
Generating Make Commands for Nondefault Compilers . . 6-21

viii Contents

Supporting Model Referencing

7
Overview . 7-2

System Target File Modifications 7-3

Template Makefile Modifications . 7-4

Hook File Modifications . 7-8

Supporting the Shared Utilities Directory 7-9

Using Target Preferences

8
Introduction to Target Preferences 8-2

Target Preferences Classes, Objects, and Properties 8-2

Creating Your Target Preferences Class 8-4

Target Preferences Class Methods 8-8

Making Target Preferences Available to the End
User . 8-10

Using Target Preferences in the Build Process 8-12
Introduction . 8-12
Accessing Target Preference Data from MATLAB 8-12
Accessing Target Preference Data from TLC 8-12

ix

Interfacing to Development Tools

9
Introduction . 9-2

Makefile Approach . 9-3

Interfacing to an Integrated Development
Environment . 9-4
Introduction . 9-4
Generating a CPP_REQ_DEFINES Header File 9-4
Interfacing to the CodeWarrior IDE 9-5

Developing Device Drivers for Embedded
Targets

10
Overview . 10-2

Introduction . 10-2
Related Documentation . 10-2
Tradeoffs in Device Driver Development 10-3
Example Device Driver . 10-5

Writing a Device Driver C-MEX S-Function 10-6
Overview . 10-6
Required Defines and Include Files 10-7
Other Preprocessor Symbols . 10-8
Functions Required by the S-Function API 10-8

Creating a User Interface for Your Driver 10-18
Using a Masked Device Driver Block 10-18
Obtaining and Using a Scalar Parameter 10-23
Obtaining and Using a Vector Parameter 10-24

Building the MEX-File and the Driver Block 10-25
Making Your Drivers Available to Users 10-25

x Contents

Inlining the S-Function Device Driver 10-26
Code Components . 10-26
Inlined Device Driver Operations . 10-27
Inlining the Example ADC Driver . 10-27

Creating Device Drivers with the S-Function
Builder . 10-34
Overview . 10-34
Example Device Driver Specification 10-35
Building the MEX-File . 10-36
Binding the MEX-File to an S-Function Block 10-38
Masking the Block . 10-39
Customizing Driver Code Generation 10-40

Device Drivers in Simulation . 10-46
Introduction . 10-46
Multiple-Model Approach . 10-46
Single-Model Approach . 10-51

Index

xi

xii Contents

1

Introduction

The purpose of this document is to guide you in the development of a custom
embedded target for use with Real-Time Workshop® Embedded Coder. This
document identifies requirements, implementation tasks, and implementation
details for target creation.

The following sections summarize the prerequisites for using this document
and list sources of additional information related to embedded target
development:

Prerequisites (p. 1-2) Summarizes the prerequisite
experience level assumed for readers
of this document.

Related Documentation (p. 1-3) Describes other documents related
to embedded target development.

Embedded Target Implementations
to Study (p. 1-4)

Lists embedded target
implementations provided by
The MathWorks.

1 Introduction

Prerequisites
Custom target creation is a topic for advanced users of Real-Time Workshop
and Real-Time Workshop Embedded Coder. This document assumes you are
experienced with MATLAB®, Simulink®, Real-Time Workshop, and Real-Time
Workshop Embedded Coder.

This document assumes that you will be developing a target based on the
Embedded Real-Time (ERT) target that is included in Real-Time Workshop
Embedded Coder. The target features and technologies described in this
document are subject to change in future releases of Real-Time Workshop
Embedded Coder.

You should be familiar with the following products and their documentation
before reading this document:

• MATLAB and M-file programming

• Simulink

• Real-Time Workshop and its code generation and build process

• Real-Time Workshop Embedded Coder

• Real-Time Workshop Target Language Compiler (TLC)

Familiarity with Stateflow® may be helpful, but is not required.

1-2

Related Documentation

Related Documentation
This document supplements information contained in other Real-Time
Workshop Embedded Coder, Real-Time Workshop, and Simulink documents.
The following documents provide additional information:

• Real-Time Workshop Embedded Coder documentation: You should be
thoroughly familiar with this detailed documentation of Real-Time
Workshop Embedded Coder and the ERT target. Important topics covered
include ERT model execution, timing, and task management; how to
interface to and call model code; and default ERT code generation options.

• Getting Started with Real-Time Workshop document: General introduction
to Real-Time Workshop. The “Introduction” and “Building an Application”
chapters include high-level overviews of target files and the build process.

• Real-Time Workshop documentation: The detailed documentation of
Real-Time Workshop covers several topics of interest to some target
developers:

- Inlining and code generation issues relevant to device drivers and other
S-functions

- Interfacing signals and parameters within generated code to your own
code

- Combining code generated from multiple models into a single system

- Implementing external mode communication via your own low-level
protocol layer

• Real-Time Workshop Target Language Compiler document: A working
knowledge of TLC is needed if you intend to make nontrivial modifications
to your system target file, use TLC hooks into the build process, utilize
information from the model.rtw file, implement inlined device drivers,
or pass information into or out of the TLC phase of the build process.
Minimally, you should work through the introductory sections, including
“Getting Started”.

• Simulink Writing S-Functions document: Familiarity with writing fully
inlined S-functions is required if you intend to develop device driver blocks
for your target. “Building S-Functions Automatically” documents the
S-Function Builder.

1-3

1 Introduction

Embedded Target Implementations to Study
You should also consider becoming familiar with the documentation for the
following targets. If you do not have a license for a product of interest, you can
access the documentation from the MathWorks Web site.

• Target for Freescale™ MPC5xx

• Target for Infineon C166®

• Target for TI C2000™

• Target for TI C6000™

1-4

2

Overview of Embedded
Target Development

Introduction (p. 2-2) Motivation for developing a custom
embedded target.

Types of Targets (p. 2-3) Summary of target types that are
appropriate for various use cases.

Recommended Features for
Embedded Targets (p. 2-6)

Required and recommended
functionality for custom embedded
targets.

2 Overview of Embedded Target Development

Introduction
The targets bundled with Real-Time Workshop are suitable for many different
applications and development environments. Third-party targets provide
additional versatility. However, you might want to implement a custom target
for any of the following reasons:

• To enable end users to generate executable production code for a specific
CPU or development board, using a specific development environment
(compiler/linker/debugger).

• To support I/O devices on the target hardware by incorporating custom
device driver blocks into your models.

• To configure the build process for a special compiler (such as a
cross-compiler for an embedded microcontroller or DSP board) or
development/debugging environment.

Real-Time Workshop Embedded Coder provides a point of departure for the
creation of custom embedded targets, for the basic purposes above. This
manual covers the tasks and techniques you need to implement a custom
embedded target.

2-2

Types of Targets

Types of Targets
• “Introduction” on page 2-3

• “Baseline Targets” on page 2-3

• “Turnkey Production Targets” on page 2-4

• “HIL Simulation Targets” on page 2-4

• “PIL Cosimulation Targets” on page 2-4

Introduction
Before considering the specific components, features, and capabilities that
should be included in an embedded target, let’s consider several types of
targets intended for different use cases.

The target types discussed below are not mutually exclusive. A given
embedded target can support more than one of these use cases, or additional
uses not outlined here. Also, there is a progression of capabilities from the
first (baseline) to second (turnkey production) target types; you may want
to implement an initial baseline target and a following, more full-featured
turnkey version of a target.

The discussion of target types is followed by “Recommended Features for
Embedded Targets” on page 2-6, which contains a suggested list of target
features and general guidelines for embedded target development.

Baseline Targets
A baseline target offers a starting point for targeting a production processor. A
baseline target integrates Real-Time Workshop Embedded Coder with one
or more popular cross-development environments (compiler/linker/debugger
tool chains). A baseline target provides a starting point from which you can
customize the target for application needs.

Target files provided for this type of target should be readable, easy to
understand, and fully commented and documented. Specific attention should
be paid to the interface to the intended cross-development environment.
This interface should be implemented using the preferred approach for
that particular development system. For example, some development

2-3

2 Overview of Embedded Target Development

environments use traditional make utilities, while others are based on
project-file builds that can be automated under control of Real-Time
Workshop.

When you use a baseline target, you need to include your own device driver
and legacy code and modify linker memory maps to suit your needs. You
should be familiar with the targeted development system.

Turnkey Production Targets
A turnkey production target also targets a production processor, but includes
the capability to create target executables that interact immediately with the
external world. In general, ease of use is more important than simplicity or
readability of the target files, because it is assumed that you do not want
or need to modify these files.

Desirable features for a turnkey production target include

• Significant I/O driver support provided out of the box

• Easy downloading of generated standalone executables with third-party
debuggers

• User-controlled placement of an executable in FLASH or RAM memory

• Support for target visibility and tuning

HIL Simulation Targets
A specialized use case is the generation of executables intended for use in
Hardware-In-the-Loop (HIL) simulations. In a HIL simulation, parts of a pure
simulation are gradually replaced with hardware components as components
are refined and fabricated. HIL simulation offers an efficient design process
that eliminates costly iterations of part fabrication.

PIL Cosimulation Targets
Another specialized use case is the generation of executables intended for
use in Processor-In-the-Loop (PIL) cosimulation. In a PIL cosimulation, a
subsystem runs on target hardware, but within the context of a Simulink
simulation. Cosimulation can be useful for validation of generated code and

2-4

Types of Targets

in validating the target compiler/processor environment at the subsystem
unit level.

2-5

2 Overview of Embedded Target Development

Recommended Features for Embedded Targets
• “Basic Target Features” on page 2-6

• “Integration with Target Development Environments” on page 2-7

• “Observing Execution of Target Code” on page 2-8

• “Deployment and Hardware Issues” on page 2-8

This section gives a suggested list of target features and general guidelines
for embedded target development.

Basic Target Features

• Targets should be based on the Embedded Real-Time (ERT) target that
is included in Real-Time Workshop Embedded Coder. The features
documented in this guide are available in the corresponding release of
Real-Time Workshop Embedded Coder (release versions are listed in the
Revision History found in the front matter of the PDF version of the guide).

Since your target is based on the ERT target, it should use that target’s
Embedded-C code format, and should inherit the options defined in the
ERT target’s system target file. By following these recommendations, you
ensure that your target has all the production code generation capabilities
of the ERT target.

See Chapter 5, “System Target Files” for further details on the inheritance
mechanism, setting the code format, and other details.

• The most fundamental requirement for an embedded target is that it
generate a real-time executable from a model or subsystem. Typically, an
embedded target generates a timer interrupt-based, bareboard executable
(although targets can be developed for an operating system environment
as well).

Your target should support the Real-Time Workshop concepts of
singletasking and multitasking solver modes for model execution. Tasking
support comes almost “for free” with the ERT target, but you should
thoroughly understand how it works before implementing an ERT-based
target.

2-6

Recommended Features for Embedded Targets

Implementation of timer interrupt-based execution is documented in the
“Data Structures, Code Modules, and Program Execution” chapter of the
Real-Time Workshop Embedded Coder documentation.

• You should generate the target executable’s main program module, rather
than using a static main module (such as the static ert_main.c module
provided with Real-Time Workshop Embedded Coder). A generated main.c
or .cpp can be made much more readable and more efficient, since it omits
preprocessor checks and other extra code.

See the Real-Time Workshop Embedded Coder documentation for
information on generated and static main program modules.

• You should use the target preferences mechanism (see Chapter 8,
“Using Target Preferences”) to store and configure information about
the development environment a user selects and other persistent data
associated with your target.

• Follow the guidelines in Chapter 4, “Target Directories, Paths, and Files” to
set up a file and directory structure that is consistent with other targets.
Consistency between different targets is important and reduces the effort
required to create and understand a target.

Integration with Target Development Environments

• Most cross-development systems run under a Windows PC host. Your target
should support Windows 2000 or Windows XP as the host environment.

Some cross-development systems support one or more versions of UNIX,
allowing for UNIX host support as well.

• Your embedded target must support at least one embedded development
environment. The interface to a development environment can take one of
several forms. The most common approach is to use a template makefile
to generate standard makefiles with the make utility provided with your
development environment. Chapter 6, “Template Makefiles” describes
the structure of template makefiles.

Another approach with IDE-based tools is project file creation and/or
Windows Component Object Model (COM) automation.

It is important to consider the license requirements and restrictions of the
development environment vendor. You may need to modify files provided
by the vendor and ship them as part of the embedded target.

2-7

2 Overview of Embedded Target Development

See Chapter 9, “Interfacing to Development Tools” for further information.

Observing Execution of Target Code

• Your target should support a mechanism you can use to observe the target
code as it runs in real time (outside of a debugger).

One industry-standard approach is to use the CAN bus, with an ASAP2
file and CAN Calibration Protocol (CCP). There are several host-based
graphical front-end tools available that connect to a CCP-enabled target
and provide data viewing and parameter tuning. Supporting these tools
requires implementation of CAN hardware drivers and CCP protocol for
the target, as well as ASAP2 file generation. Your target can leverage the
ASAP2 support provided by Real-Time Workshop Embedded Coder.

Another option is to support Simulink External Mode over a serial interface
(RS-232). See the Real-Time Workshop documentation for information on
using the external mode API.

Deployment and Hardware Issues

• Device driver support is an important issue in the design of an embedded
target. Device drivers are Simulink blocks that support either hardware
I/O capabilities of the target CPU, or I/O features of the development board.

If you are developing a baseline target, consider providing minimal driver
support, on the assumption that end users develop their own drivers. If
you are developing a turnkey production target, you should provide full
driver support. See Chapter 10, “Developing Device Drivers for Embedded
Targets” for a detailed discussion of device drivers.

• Automatic download of generated code to the target hardware makes a
target easier to use. Typically a debugger utility is used; if the chosen
debugger supports command script files, this can be straightforward to
implement. “STF_make_rtw_hook.m” on page 4-13 describes a mechanism
to execute M-code from the build process. You can use this mechanism to
make system() calls to invoke utilities such as a debugger. You can invoke
other simple downloading utilities in a similar fashion.

If your development system supports COM automation, you can control the
download process by that mechanism. Using COM automation is discussed
in Chapter 9, “Interfacing to Development Tools”.

2-8

Recommended Features for Embedded Targets

• Executables that are mapped to RAM memory are typical. You can provide
optional support for FLASH or RAM placement of the executable by using
your target’s code generation options. To support this capability, you might
need multiple linker command files, multiple debugger scripts, and possibly
multiple makefiles or project files. The ability to automatically switch
between these files, depending on the RAM/FLASH option value, is also
needed.

• Select a popular, widely available evaluation or prototype board for your
target processor. Consider enclosed and ruggedized versions of the target
board. Also consider board level support for the various on-chip I/O
capabilities of the target CPU, and the availability of development systems
that support the selected board.

2-9

2 Overview of Embedded Target Development

2-10

3

Target Development
Mechanics

Components of a Custom Target
(p. 3-2)

Summary of the code components
and control files that make up a
custom target.

Understanding and Using the Build
Process (p. 3-9)

Detailed flowchart of the build
process of Real-Time Workshop
Embedded Coder, with emphasis
on available customization hooks
and on passing information between
different phases of the process.

3 Target Development Mechanics

Components of a Custom Target
• “Overview” on page 3-2

• “Code Components” on page 3-3

• “Control Files” on page 3-5

Overview
The components of a custom target are files located in a hierarchy of
directories. The top-level directory in this structure is called the target root
directory. The target root directory and its contents are named, organized,
and located on the MATLAB path according to conventions described in
Chapter 4, “Target Directories, Paths, and Files”.

The components of a custom target include

• Code components: C source code that supervises and supports execution of
generated model code.

• Control files:

- A system target file (STF) to control the code generation process.

- File(s) to control the building of an executable from the generated code.
In a traditional make-based environment, a template makefile (TMF)
generates a makefile for this purpose. Another approach is to generate
project files in support of a modern integrated development environment
(IDE) such as Metrowerks CodeWarrior.

- Hook files: Optional TLC and M-files that can be invoked at well-defined
stages of the build process. Hook files let you customize the build process
and communicate information between various phases of the process.

• Target preferences files: These files define a target preferences class
associated with your target. Your target preference class lets you create
data objects that define and store properties associated with your target.
For example, you may want to store a user-defined path to a cross-compiler
that is invoked by the build process. The target preferences mechanism is
described in Chapter 8, “Using Target Preferences”.

• Other target files: Files that let you integrate your target into the MATLAB
environment. For example, you can provide an info.xml file to make

3-2

Components of a Custom Target

your target block libraries, demos, and target preferences available from
the MATLAB Start menu.

The next sections introduce key concepts and terminology you need to know
to develop each component. References to more detailed information sources
are provided.

Code Components
A Real-Time Workshop program containing code generated from a Simulink
model consists of a number of code modules and data structures. These fall
into two categories.

Application Components
Application components are those which are specific to a particular model;
they implement the functions represented by the blocks in the model.
Application components are not specific to the target. Application components
include

• Modules generated from the model

• User-written blocks (S-functions)

• Parameters of the model that are visible, and can be interfaced to, external
code

Run-Time Interface Components
A number of code modules and data structures, referred to collectively as
the run-time interface, are responsible for managing and supporting the
execution of the generated program. The run-time interface modules are not
automatically generated. Depending on the requirements of your target, you
must implement certain parts of the run-time interface. Run-Time Interface
Components on page 3-4 summarizes the run-time interface components.

3-3

3 Target Development Mechanics

Run-Time Interface Components

You Provide... Real-Time Workshop Provides...

Customized main program Generic main program

Timer interrupt handler to run
model

Execution engine and integration solver
(called by timer interrupt handler)

Other interrupt handlers Example interrupt handlers
(Asynchronous Interrupt blocks)

Device drivers Example device drivers

Data logging, parameter tuning,
signal monitoring, and external
mode support

Data logging, parameter tuning, signal
monitoring, and external mode APIs

User-Written Run-Time Interface Code
Most of the run-time interface is provided by Real-Time Workshop. Depending
on the requirements of your target, you must implement some or all of the
following elements:

• A timer interrupt service routine (ISR). The timer runs at the program’s
base sample rate. The timer ISR is responsible for operations that must
be completed within a single clock period, such as computing the current
output sample. The timer ISR usually calls the rt_OneStep function
supplied by Real-Time Workshop.

If you are targeting a real-time operating system (RTOS), your generated
code usually executes under control of the timing and task management
mechanisms provided by the RTOS. In this case, you may not have to
implement a timer ISR.

• The main program. Your main program initializes the blocks in the model,
installs the timer ISR, and executes a background task or loop. The timer
periodically interrupts the main loop. If the main program is designed to
run for a finite amount of time, it is also responsible for cleanup operations
— such as memory deallocation and masking the timer interrupt — before
terminating the program.

3-4

Components of a Custom Target

If you are targeting a real-time operating system (RTOS), your main
program most likely spawns tasks (corresponding to the sample rates used
in the model) whose execution is timed and controlled by the RTOS.

Your main program typically is based on the Real-Time Workshop
Embedded Coder main program, ert_main.c. The Real-Time Workshop
Embedded Coder documentation details the structure of the Real-Time
Workshop Embedded Coder run-time interface and the execution of
Real-Time Workshop Embedded Coder code, and provides guidelines for
customizing ert_main.c.

• Device drivers. Drivers communicate with I/O devices on your target
hardware. In production code, device drivers are normally implemented as
inlined S-functions.

• Other interrupt handlers. If your models need to support asynchronous
events, such as hardware generated interrupts and asynchronous read
and write operations, you must supply interrupt handlers. The Real-Time
Workshop Interrupt Templates library provides examples.

• Data logging, parameter tuning, signal monitoring, and external mode
support. It is atypical to implement rapid prototyping features such as
external mode support in an embedded target. However, it is possible to
support these features by using standard APIs provided by Real-Time
Workshop. See the Real-Time Workshop documentation for details.

Control Files
The code generation and build process is directed by a number of TLC
and M-files collectively called control files. This section introduces and
summarizes the main control files.

Top-Level Control File (make_rtw)
The build process is initiated when you click Build (or type Ctrl+B). At
this point, Real-Time Workshop parses the Make command field of the
Real-Time Workshop target configuration pane, expecting to find the name
of a top-level M-file command that controls the build process (as well as
optional arguments to that command). The default top-level control file for
the build process is make_rtw.m.

Normally, target developers do not need detailed knowledge of how make_rtw
works. (The details that are necessary to target developers are described in

3-5

3 Target Development Mechanics

“Understanding and Using the Build Process” on page 3-9.) You should not
customize make_rtw.m. The make_rtw.m file contains all the logic required to
execute your target-specific control files, including a number of hook points
for execution of your custom code.

3-6

Components of a Custom Target

make_rtw does the following:

• Passes optional arguments in to the build process

• Performs any required preprocessing before code generation

• Executes the STF to perform code generation (and optional HTML report
generation)

• Processes the TMF to generate a makefile

• Invokes a make utility to execute the makefile and build an executable

• Performs any required post-processing (such as generating calibration data
files or downloading the generated executable to the target)

System Target File (STF)
The Target Language Compiler (TLC) generates target-specific C or C++
code from an intermediate description of your Simulink block diagram
(model.rtw). The Target Language Compiler reads model.rtw and executes
a program consisting of several target files (.tlc files.) The STF, at the top
level of this program, controls the code generation process. The output of
this process is a number of source files, which are fed to your development
system’s make utility.

You need to create a customized STF to set code generation parameters for
your target. You should copy, rename, and modify the standard ERT system
target file (matlabroot/rtw/c/ert/ert.tlc).

The detailed structure of the STF is described in Chapter 5, “System Target
Files”.

Template Makefile (TMF)
A TMF provides information about your model and your development system.
Real-Time Workshop uses this information to create an appropriate makefile
(.mk file) to build an executable program.

Some targets implement more than one TMF, in order to support multiple
development environments (for example, two or more cross-compilers)
or multiple modes of code generation (for example, generating a binary
executable vs. generating a project file for your compiler).

3-7

3 Target Development Mechanics

Real-Time Workshop Embedded Coder provides a large number of TMFs
suitable for different types of host-based development systems. These TMFs
are located in matlabroot/rtw/c/ert. The standard TMFs are described
in the “Template Makefiles and Make Options” section of the Real-Time
Workshop documentation.

The detailed structure of the TMF is described in Chapter 6, “Template
Makefiles”.

Hook Files
Real-Time Workshop build process allows you to supply optional hook files
that are executed at specified points in the code generation and make process.
You can use hook files to add target-specific actions to the build process.

To ensure that hook files are called correctly by the build process, they must
follow well-defined naming and location requirements. Chapter 4, “Target
Directories, Paths, and Files” describes these requirements.

3-8

Understanding and Using the Build Process

Understanding and Using the Build Process
• “Introduction” on page 3-9

• “Build Process Phases and Information Passing” on page 3-9

• “Build Process Flowchart” on page 3-11

• “Additional Information Passing Techniques” on page 3-16

Introduction
To develop an embedded target, you need a thorough understanding of the
Real-Time Workshop build process. Your embedded target uses the build
process and may require you to modify or customize the process. A general
overview of the build process is given in the “Building an Application” chapter
of Getting Started with Real-Time Workshop.

This section supplements that overview with a detailed flowchart of the
build process as implemented by Real-Time Workshop Embedded Coder. The
emphasis is on points in the process where customization hooks are available
and on passing information between different phases of the process.

This section concludes with “Additional Information Passing Techniques” on
page 3-16, describing assorted tips and tricks for passing information during
the build process.

Build Process Phases and Information Passing
It is important to understand where (and when) the build process obtains
required information. Sources of information include

• The model.rtw file, which provides information about the generating
model. All information in model.rtw is available to target TLC files.

• The Real-Time Workshop related panes of the Configuration Parameters
dialog box. Options (both general and target-specific) are provided through
check boxes, menus, and edit fields. You can associate options with TLC
variables and makefile tokens in the rtwoptions data structure.

• The target preferences data. Target preferences provide persistent
information about the target, such as the location of your development tools.

3-9

3 Target Development Mechanics

• The TMF, which generates the model-specific makefile.

• Environment variables on the host computer. Environment variables
provide additional information about installed development tools.

• Other target-specific files such as target-related TLC files, linker command
files, or project files.

It is also important to understand the several phases of the build process and
how to pass information between the phases. The build process comprises
several high-level phases:

• Execution of the top-level M-file (make_rtw.m) to sequence through the
build process for a target

• Conversion of the model into the TLC input file (model.rtw)

• Generation of the target code by the TLC compiler

• Compilation of the generated code with make or other utilities

• Transmission of the final generated executable to the target hardware
with a debugger or download utility

It is helpful to think of each phase of the process as a different “environment”
that maintains its own data. These environments include

• M-code execution environment (MATLAB)

• Simulink

• Target Language Compiler execution environment

• makefile

• Development environments such as and IDE or debugger

In each environment, information may be needed from the various sources
mentioned above. For example, during the TLC phase, it may be necessary to
execute an M-file to obtain information from the MATLAB environment. Also,
a given phase may generate information that is needed in a subsequent phase.

3-10

Understanding and Using the Build Process

Build Process Flowchart
The following flowcharts detail the build process as a sequence of actions that
execute within several environments:

• “MATLAB Environment for Build Process” on page 3-12 depicts the initial
M-code execution phase.

• “Simulink and M-Code Environment for Build Process” on page 3-13 depicts
the Simulink model compilation phase and M-code execution following it.

• “TLC and M-Code Environment Flowchart” on page 3-14 depicts the main
TLC code generation phase and M-code execution following it.

• “M-Code, model.bat, and Makefile Environment Flowchart” on page 3-15
depicts the final M-code, model.bat, and make phase.

In the flowcharts, bold rectangles and oval balloons indicate points where
different environments can interact by using hooks or other mechanisms for
information passing. See “Files in the Target Directory” on page 4-11 for
details on the available M-file and TLC hooks, with code examples.

3-11

3 Target Development Mechanics

MATLAB Environment for Build Process

��������	��	
������	���	������
�����������	���	�����	�������

����	
��������	��	��������	�����	���
�������	����	�����	�����	���������
���	��	
�	���	��	
��

����	���������	������
����������	
�������
������������������� !
�"�#�$
	��	��	� ����! ����������	�
����������

�������

����������	�
����������
�������������������

����������	�
����������
������

������	���� !
�"�#�$

"�����	����	����#�$	�����
%�����&����$	��	�	�� !
�������
�$

'��	
()	����	����	*����(���
+�����,	'-"

����	���������	������
��������������
������������������� !
�"�#�$
��	��	� ����!	.��������$	���,���	/
�������	*(+
�����	���������!!!/	�������!

'��	�������������	�,�����	����	*����(���	+�����,	'-"

'��	(�)	����	��	���	�,�������	������	��	���	(�)	����

�0(10�	�������	+�����	%������	�������

3-12

Understanding and Using the Build Process

Simulink and M-Code Environment for Build Process

����	����	
������	��	��������	����
��	�
����!	�����	���,�������	��������	%���	���
���	,��������	����������!

�	�
������������������	��
	�������	����������������

2�����	����������������	��	%����	���������!

"����	(�����	1�������	���,����	����	
()$
����
��	�������	�%�	!�&����	�������	����
���������!

��������	��	(1�	���	������
�����������)��������

3-13

3 Target Development Mechanics

TLC and M-Code Environment Flowchart

�	�
�������������������
�	����������������

�	�
������������	������
�	�
��������	�����
����	����

�	�
�����������������	����

����	����	���������	����
�	������������������������

������������������ ��������	�
	����	�������!�"������������#�$	��

�'	��#�	���		!&#��	
�����������
������	�������	�,	����������	(1�
�����%���	���	�����������!

(!&�
 ���)����#�&�&	�'�	
�)
���������	��	
()	���������	����	����������!

*�������
�	�����������	��	
()	���
��,����	%�����	��!&��	����	����������!

.,������	3(�1	��,���	����������

�'	��#�	�#�&�!
���	
�	���������	������
����������	��	����������	�����	���	��%������$
���	��	��!	�'	��#�	�#�&�!
���	
�
���������	����	������	� ,���	��	(1��
���������	�����������	����	�0(10�	���
�����	������	,���������	����	�+,"-�

*��	��!&��&		�������	��	���������	������	�����

������	.%/0-+	����	��	�������	���	�����
����	���	���������!

)�����	3(�1	��,���	����������
���	���������	%�	,���������	���������
������	�����	����	3(�1!

3-14

Understanding and Using the Build Process

M-Code, model.bat, and Makefile Environment Flowchart

����	���������	������
������������������
��������	
�����	��1�	���
	���
�	�.����!
��� !
�%�	��� !
�"�#�$���	��	� ����!

����������	�
����������
������

*���	(�)	����$,������42&���34	����� �	��"	��	�������	�����%���&�	��"	��	���
�����������#�������'��������()

*���	���	�	�������#��	�����$	� ,���
��������$	��%�$	�����	���	��������	����
���

���������������������������#��$��$����#�	����

���������%'���(*��
���#�	����
��������
������+���$���	������()

"�	4�&���	��*����%&
'	��������$	��,	��	� ��	���!

����	������������������	��	��	� ����!	.��������	���
."5+*./	����	��	(�)	��	������	�������	���,����	���
��������	�������	����
���	�

��	�������	���������	��	607-/�0**+	��	�������	��
(�)5	��	���	�������$	���	�������	��888�*���	����

"����	����
���		����!	����	�/%0�	���
�������	������	����	�������	�������!

����	���������	������
������������
��������	
�����	���	���
	���
�	�.����!
��� !
�%�	��� !
�"�#�$	��	��	� ����!

�������$����
����	��
�	�
���������������
���	�

�	�
��������������������������

�������$���������"������#���	�
�����$����	�
�������������������

3-15

3 Target Development Mechanics

Additional Information Passing Techniques
This section describes a number of useful techniques for passing information
among different phases of the build process.

tlcvariable Field in rtwoptions Structure
Options on the Real-Time Workshop related panes of the Configuration
Parameters dialog box can be associated with a TLC variable, and specified
in the tlcvariable field of the option’s entry in the rtwoptions structure.
The variable value is passed on the command line when TLC is invoked.
This provides another way to make Real-Time Workshop options and their
values available in the TLC phase.

See “System Target File Structure” on page 5-4 for further information.

makevariable Field in rtwoptions Structure
Similarly, Real-Time Workshop options can be associated with a template
makefile token, specified in the makevariable field of the option’s entry in
the rtwoptions structure. If a token of the same name as the makevariable
name exists in the TMF, the token is updated with the option value when
the final makefile is created. If the token does not exist in the TMF, the
makevariable is passed in on the command line when make is invoked. Thus,
in either case, the makevariable is available to the makefile.

See “System Target File Structure” on page 5-4 for further information.

Accessing Host Environment Variables
You can access host shell environment variables from MATLAB by entering
the getenv command. For example:

getenv ('MSDEVDIR')

ans =

D:\Applications\Microsoft Visual Studio\Common\MSDev98

3-16

Understanding and Using the Build Process

To access the same information from TLC, use the FEVAL directive to invoke
getenv.

%assign eVar = FEVAL("getenv", "<varname>").

Supplying Development Environment Information to Your
Template Makefile
An embedded target must tie the build process to target-specific development
tools installed on a host computer. For the make process to run these tools
correctly, the TMF must be able to determine the name of the tools, the path
to the compiler, linker, and other utilities, and possibly the host operating
system environment variable settings. This section describes two techniques
for supplying this information.

The simpler, more traditional approach is to require the end user to modify
the target TMF. The user enters path information (such as the location of
a compiler executable), and possibly host operating system environment
variables, as make variables. This allows the TMF to be tailored to specific
needs.

This approach is not satisfactory in an environment where MATLAB is
installed on a network and multiple users share read-only TMFs. Another
possible drawback to this approach is that the tool information is only
available during the makefile processing phase of the build process.

A second approach is to use the target preferences feature (see Chapter 8,
“Using Target Preferences”) together with the STF_wrap_make_cmd_hook
mechanism (see “STF_wrap_make_cmd_hook Mechanism” on page 4-15).
In this approach, compiler and other tool path information is stored as
preferences data, which is obtained by the STF_wrap_make_cmd_hook.m file.
This allows tool path information to be saved separately for each user.

Another advantage to the second approach is that target preferences data is
available to all phases of the build process, including the TLC phase. This
information may be required to support features such as RAM/ROM profiling.

3-17

3 Target Development Mechanics

Using MATLAB Application Data
Application data provides a way for applications to save and retrieve data
stored with the GUI. This technique enables you to create what is essentially
a user-defined property for an object, and use this property to store data
for use in the build process. If you are unfamiliar with this technique, see
the “Application Data” section of the MATLAB Creating Graphical User
Interfaces document.

The following code examples illustrates the use of application data to pass
information to TLC.

This M-file, tlc2appdata.m, stores the data passed in as application data
under the name passed in (appDataName).

function k = tlc2appdata(appDataName, data)
disp([mfilename,': ',appDataName,' ', data]);
setappdata(0,appDataName,data);
k = 0; % TLC expects a return value for FEVAL.

The following sample TLC file uses the FEVAL directive to invoke
tlc2appdata.m to store arbitrary application data, under the name z80.

%% test.tlc
%%
%assign myApp = "z80"
%assign myData = "314159"
%assign dummy = FEVAL("tlc2appdata",myApp,myData)

To test this technique:

1 Create the tlc2appdata.m M-file as shown. Make sure that tlc2appdata.m
is stored in a directory on the MATLAB path.

2 Create the TLC file as shown. Save it as test.tlc.

3 Enter the following command at the MATLAB prompt to execute the TLC
file:

tlc test.tlc

4 Get the application data at the MATLAB prompt:

3-18

Understanding and Using the Build Process

k = getappdata(0,'z80')

MATLAB returns the value 314159.

5 Enter the following command.

who

Note that application data is not stored in the MATLAB workspace. Also
observe that the z80 data is not visible. Using application data in this
way has the advantage that it does not corrupt the MATLAB workspace.
Also, it helps prevent you from accidently deleting your data, since it is not
stored directly in the your workspace.

A real-world use of application data might be to collect information from the
model.rtw file and store it for use later in the build process.

Adding Block-Specific Information to the Makefile
The rtwmakecfg mechanism provides a method for inlined S-functions such as
driver blocks to add information to the makefile. This mechanism is described
in “Using rtwmakecfg Files to Customize the Makefile” on page 6-17.

3-19

3 Target Development Mechanics

3-20

4

Target Directories, Paths,
and Files

Introduction (p. 4-2) Motivation and overview of this
section.

Directory and File Naming
Conventions (p. 4-3)

Requirements and recommendations
for naming your target directories
and files.

Target Directory Structure and
MATLAB Path (p. 4-4)

Structure and location of target
directories.

Target Directories and Files (p. 4-6) Content and usage of target
directories and files.

Files in the Target Directory (p. 4-11) Detailed coverage of key target files,
including customization hooks.

Additional Directories and Files
for Externally Developed Targets
(p. 4-19)

Information for external (not
MathWorks) target developers.

4 Target Directories, Paths, and Files

Introduction
Your initial tasks in setting up an embedded target are

• Create a target directory structure

• Include desired directories in the MATLAB path

• Create the required target files and locate them in your target directories.
In some cases you modify files provided by Real-Time Workshop Embedded
Coder.

The following sections explain how to organize your target directories and
files and add them to the your MATLAB path. They also provide high-level
descriptions of the files to be stored in each directory of the structure.

You should follow the conventions described. By doing so, you can make
your embedded targets consistent, easy to understand, and efficient. The
conventions in this section provide guidelines for the root target directory
and key directories immediately under it. You can, of course, define further
subdirectories if your target is complex or if you need a more modular
structure.

4-2

Directory and File Naming Conventions

Directory and File Naming Conventions
For an actual target implementation, the recommended directory and file
naming conventions are

• Use the name of the target processor (for example, c166).

• For subdirectories containing files associated with specific development
environments or tools, use the name of the tool (for example, codewarrior).

• Use only lowercase in all directory names, filenames, and extensions.

• Do not embed spaces in directory names. Spaces in directory names cause
errors with many third-party development environments.

In this document, mytarget is a placeholder name that represents directories
and files that use the target’s name. The names dev_tool1, dev_tool2, and
so on represent subdirectories containing files associated with development
environments or tools.

4-3

4 Target Directories, Paths, and Files

Target Directory Structure and MATLAB Path
• “Overview” on page 4-4

• “Adding Target Directories to the MATLAB Path” on page 4-4

• “Location of Target Directories” on page 4-5

Overview
You should create a directory structure like that shown in Recommended
Target Directory Structure on page 4-4 for your target files. The top-level
directory in this structure, mytarget, is the target root directory.

(����	�����������	����	%�	�����
��	���	�0(10�	,���!

�'	��#�	

�'	��#�	

�
����

��9�	��
:

��9�	��
;

Recommended Target Directory Structure

The contents of the target root directory and its subdirectories (as well as
optional additional directories) are discussed in “Target Directories and Files”
on page 4-6.

Adding Target Directories to the MATLAB Path
The directories shown in Recommended Target Directory Structure on page
4-4 must be added to the MATLAB path.

The directories labeled dev_tool1 and dev_tool2 in Recommended Target
Directory Structure on page 4-4 contain files associated with specific
development environments or tools (dev_tool1, dev_tool2, etc.) that are
supported by your target.

4-4

Target Directory Structure and MATLAB Path

Location of Target Directories
All directory names and filenames must meet the requirements listed in
“Directory and File Naming Conventions” on page 4-3. Note carefully the
following rules for locating your target directories:

• For embedded targets developed by The MathWorks that are installed
with MATLAB, the target root directory should be located under
matlabroot/toolbox/rtw/targets/.

• For embedded targets not developed by The MathWorks, the target root
directory should not be located anywhere in the MATLAB directory tree
(that is, in or under the matlabroot directory). This restriction exists
because installing a new version of MATLAB (or reinstalling the current
version) recreates the MATLAB directories, which deletes any custom
target directories existing within the MATLAB tree.

4-5

4 Target Directories, Paths, and Files

Target Directories and Files
• “Target Root Directory (mytarget)” on page 4-6

• “Target Directory (mytarget/mytarget)” on page 4-6

• “Target Block Directory (mytarget/blocks)” on page 4-6

• “Development Tools Directory (mytarget/dev_tool1, mytarget/dev_tool2)”
on page 4-9

• “Target Preferences Directory (mytarget/mytarget/@mytarget)” on page
4-10

• “Target Source Code Directory (mytarget/src)” on page 4-10

Target Root Directory (mytarget)
This directory contains the key subdirectories for the target (see Recommended
Target Directory Structure on page 4-4). You can also locate miscellaneous
files (such as a readme file) in the target root directory. The following sections
describe required and optional subdirectories and their contents.

Target Directory (mytarget/mytarget)
This directory contains files that are central to the target, such as the
system target file (STF) and template makefile (TMF). “Files in the Target
Directory” on page 4-11 summarizes the files that should be stored in
mytarget/mytarget, and provides pointers to detailed information about
these files.

Note mytarget/mytarget should be on the MATLAB path.

Target Block Directory (mytarget/blocks)
If your target includes device drivers or other blocks, locate the block
implementation files in this directory. mytarget/blocks contains

• Compiled block MEX-files

• Source code for the blocks

4-6

Target Directories and Files

• TLC inlining files for the blocks

• Library models for the blocks (if you provide your blocks in one or more
libraries)

Note mytarget/blocks should be on the MATLAB path.

You can also store demo models and any supporting M-files in
mytarget/blocks. Alternatively, you can create a mytarget/mytargetdemos
directory, which should also be on the MATLAB path.

To display your blocks in the standard Simulink Library Browser and/or
integrate your demo models into the standard Demos page of the Help
browser and Start button, you can create the files described below and store
them in mytarget/blocks.

mytarget/blocks/slblocks.m
This file allows a group of blocks to be integrated into the Simulink Library
and Simulink Library Browser.

Example slblocks.m File

function blkStruct = slblocks

% Information for "Blocksets and Toolboxes" subsystem

blkStruct.Name = sprintf('Embedded Target\n for MYTARGET');

blkStruct.OpenFcn = 'mytargetlib';

blkStruct.MaskDisplay = 'disp(''MYTARGET'')';

% Information for Simulink Library Browser

Browser(1).Library = 'mytargetlib';

Browser(1).Name = 'Embedded Target for MYTARGET';

Browser(1).IsFlat = 1;% Is this library "flat" (i.e. no subsystems)?

blkStruct.Browser = Browser;

4-7

4 Target Directories, Paths, and Files

mytarget/blocks/demos.xml
This file provides information about the components, organization, and
location of demo models. MATLAB uses this information to place the demo
in the appropriate place in the Demos page of the Help browser and Start
button.

4-8

Target Directories and Files

Example demos.xml File

<?xml version="1.0" encoding="utf-8"?>

<demos>

<name>Embedded Target for MYTARGET</name>

<type>simulink</type>

<icon>$toolbox/matlab/icons/boardicon.gif</icon>

<description source = "file">mytarget_overview.html</description>

<demosection>

<label>Multirate model</label>

<demoitem>

<label>MYTARGET demo</label>

<file>mytarget_overview.html</file>

<callback>mytarget_model</callback>

</demoitem>

</demosection>

</demos>

Development Tools Directory (mytarget/dev_tool1,
mytarget/dev_tool2)
These directories contain files associated with specific development
environments or tools (dev_tool1, dev_tool2, etc.). Normally, your target
supports at least one such development environment and invokes its compiler,
linker, and other utilities during the build process. mytarget/dev_tool1
includes linker command files, startup code, hook functions, and any other
files required to support this process.

For each development environment, you should provide a separate directory.

You should use the target preferences mechanism (see Chapter 8, “Using
Target Preferences”) to store information about a user’s choice of development
environment or tool, paths to the installed development tools, and so on.
Using target preferences data in this way lets your build process code select
the appropriate development environment and invoke the appropriate
compiler and other utilities. See the code excerpt in “mytarget_default_tmf.m
Example Code” on page 6-13 for an example of how to use target preferences
data for this purpose.

4-9

4 Target Directories, Paths, and Files

Target Preferences Directory
(mytarget/mytarget/@mytarget)
If you create a target preferences class to store information about user
preferences, you should store data class definition files and other files that
support your target-specific preferences in mytarget/mytarget/@mytarget.
The Simulink Data Class Designer creates the @mytarget directory
automatically within the parent directory. See Chapter 8, “Using Target
Preferences” for further information.

Target Source Code Directory (mytarget/src)
This directory is optional. If the complexity of your target requires it, you
can use mytarget/src to store any common source code and configuration
code (such as boot and startup code).

4-10

Files in the Target Directory

Files in the Target Directory
• “mytarget.tlc” on page 4-11

• “mytarget.tmf” on page 4-12

• “mytarget_default_tmf.m” on page 4-12

• “mytarget_settings.tlc” on page 4-12

• “mytarget_genfiles.tlc” on page 4-13

• “mytarget_main.c” on page 4-13

• “STF_make_rtw_hook.m” on page 4-13

• “STF_wrap_make_cmd_hook.m” on page 4-14

• “STF_rtw_info_hook.m (obsolete)” on page 4-17

• “info.xml” on page 4-17

• “mytarget_overview.html” on page 4-18

The target directory mytarget/mytarget contains key files in your target
implementation. These include the system target file, template makefile,
main program module, and optional M and TLC hook files that let you add
target-specific actions to the build process.

mytarget.tlc
mytarget.tlc is the system target file (STF). Functions of the STF include

• Making the target visible in the System Target File Browser

• Definition of code generation options for the target (inherited and
target-specific)

• Providing an entry point for the top-level control of the TLC code generation
process

You should base your STF on ert.tlc, the STF provided by Real-Time
Workshop Embedded Coder.

4-11

4 Target Directories, Paths, and Files

Chapter 5, “System Target Files” gives detailed information on the structure
of the STF, and also gives instructions on how to customize an STF to

• Display your target in the System Target File Browser

• Add your own target options to the Configuration Parameters dialog box

• Tailor the code generation and build process to the requirements of your
target

mytarget.tmf
mytarget.tmf is the template makefile for building an executable for your
target.

For basic information on the structure and operation of template makefiles,
see Chapter 6, “Template Makefiles”.

If your target development environment requires automation of a modern
integrated development environment (IDE) rather than use of a traditional
make utility, see Chapter 9, “Interfacing to Development Tools”.

It is often necessary to create multiple template makefiles to support
different development environments. See “Supporting Multiple Development
Environments” on page 5-36 and “mytarget_default_tmf.m Example Code”
on page 6-13 for information.

mytarget_default_tmf.m
This file is optional. You can implement a mytarget_default_tmf.m file to
select the correct template makefile, based on user preferences. See “Setting
Up a Template Makefile” on page 6-12.

mytarget_settings.tlc
This file is optional. Its purpose is to centralize global settings in the code
generation environment. See “Using mytarget_settings.tlc” on page 5-31 for
details.

4-12

Files in the Target Directory

mytarget_genfiles.tlc
This file is optional. mytarget_genfiles.tlc is useful as a central file
from which to invoke any target-specific TLC files that generate additional
files as part of your target build process. For example, your target may
create sub-makefiles or project files for a development environment, or
command scripts for a debugger to do automatic downloads. See “Using
mytarget_genfiles.tlc” on page 5-34 for details.

mytarget_main.c
A main program module is required for your target. To provide a main
module, you can either

• Modify the ert_main.c module provided by Real-Time Workshop
Embedded Coder

• Generate mytarget_main.c or .cpp during the build process

The “Data Structures, Code Modules, and Program Execution” chapter of the
Real-Time Workshop Embedded Coder documentation contains a detailed
description of the operation of ert_main.c. The chapter also contains
guidelines for generating and modifying a main program module.

The “Advanced Code Generation Techniques” chapter of the Real-Time
Workshop Embedded Coder documentation describes how you can generate a
customized main program module.

STF_make_rtw_hook.m
STF_make_rtw_hook.m is an optional hook file that you can use to invoke
target-specific functions or executables at specified points in the build process.
STF_make_rtw_hook.m implements a function that dispatches to a specific
action depending on the method argument that is passed into it.

The “Advanced Code Generation Techniques” section of the Real-Time
Workshop Embedded Coder documentation describes the operation of the
STF_make_rtw_hook.m hook file in detail.

4-13

4 Target Directories, Paths, and Files

STF_wrap_make_cmd_hook.m
Use this file to override the default Real-Time Workshop behavior for selecting
the appropriate compiler tool to be used in the build process.

By default, the Real-Time Workshop build process is based on makefiles.
On PC hosts, the build process creates model.bat, an MS-DOS batch
file. model.bat sets up the appropriate environment variables for the
compiler, linker and other utilities, and invokes a make utility. The batch
file, model.bat, obtains the required environment variable settings from the
MAKECMD field in the template makefile. The standard template makefiles
supplied by Real-Time Workshop support only standard compilers that build
executables on the host system.

When developing an embedded target, you often need to override these
defaults. Typically, you need to support one or more target-specific
cross-development systems, rather than supporting compilers for the host
system. The STF_wrap_make_cmd_hook mechanism provides a way to set up
an environment specific to an embedded development tool.

Note that the naming convention for this file is not based on the target name.
It is based on the concatenation of the system target filename, STF, with the
string '_wrap_make_cmd_hook'.

Stub makefiles
Many modern cross-development systems, such as Metrowerks CodeWarrior,
are based on project files rather than makefiles. If the interface to the
embedded development system is not makefile based, one recommended
approach is to create a stub makefile. When the build process invokes the
stub makefile, no action takes place.

4-14

Files in the Target Directory

STF_wrap_make_cmd_hook Mechanism
A recommended approach to supporting non-host-based development systems
is to provide a hook file that is called instead of the default host-based
compiler selection.

To do this, create a STF_wrap_make_cmd_hook.m file. If this file exists, the
build process calls it instead of the default compiler selection process. Make
sure that:

• The file is on the MATLAB path.

• The filename is the name of your STF, prepended to the string
'__wrap_make_cmd_hook.m'.

• The hook function implemented in the file follows the function prototype
shown in the code example below.

A typical approach would be to write a STF_wrap_make_cmd_hook.m file
that creates a MS-DOS batch file (model.bat). The batch file first sets up
environment variables for the embedded target development system. Then,
it invokes the embedded target’s make utility on the generated makefile.
The STF_wrap_make_cmd_hook function should return a system command
that invokes model.bat.

This approach is shown in “Example STF_wrap_make_cmd_hook Function”
on page 4-16.

Alternatively, any MS-DOS batch file can be created by
STF_wrap_make_cmd_hook, and the function can return any
command; it is not limited to model.bat. Like the exit case of the
STF_make_rtw_hook mechanism, this provides the flexibility to invoke other
utilities or applications.

Note that on a PC host, Real-Time Workshop checks the standard output
(STDOUT) for an appropriate build success string. By default, the string is

"### Created"

You can change this specifying a different BUILD_SUCCESS variable in the
template makefile.

4-15

4 Target Directories, Paths, and Files

Example STF_wrap_make_cmd_hook Function

function makeCmdOut = stfname_wrap_make_cmd_hook(args)
makeCmd = args.makeCmd;
modelName = args.modelName;
verbose = args.verbose;

% args.compilerEnvVal not used
cmdFile = ['.\',modelName, '.bat'];
cmdFileFid = fopen(cmdFile,'wt');
if ~verbose

fprintf(cmdFileFid, '@echo off\n');
end

try
prefs = RTW.TargetPrefs.load('mytarget.prefs');

catch
error(lasterr);

end

fprintf(cmdFileFid, '@set TOOL_VAR1=%s\n', prefs.ImpPath);
fprintf(cmdFileFid, '@set TOOL_VAR2=x86-win32\n');
toolRoot = fullfile(prefs.ImpPath,'host','tool','4.4b');
fprintf(cmdFileFid, '@set TOOL_VAR3=%s\n', toolRoot);
path = getenv('Path');
path1 = fullfile(prefs.ImpPath,'host','license;');
if ~isempty(strfind(path,path1)) path1 = ''; end
fprintf(cmdFileFid, '@set Path=%s%s%s\n', path1, path);
fullMakeCmd = fullfile(prefs.ImpPath,'host','tool',...

'bin', makeCmd);
fprintf(cmdFileFid, '%s\n', fullMakeCmd);
fclose(cmdFileFid);
makeCmdOut = cmdFile;

4-16

Files in the Target Directory

STF_rtw_info_hook.m (obsolete)
Prior to Release 14, custom targets supplied target-specific information with
a hook file (referred to as STF_rtw_info_hook.m). The STF_rtw_info_hook
specified properties such as word sizes for integer data types (for example,
char, short, int, and long), and C implementation-specific properties of
the custom target.

The STF_rtw_info_hook mechanism has been replaced by the Hardware
Implementation pane of the Configuration Parameters dialog box. Using
this dialog box, you can specify all properties that were formerly specified in
your STF_rtw_info_hook file.

For backward compatibility, existing STF_rtw_info_hook files continue to
operate correctly. However, you should convert your target and models to use
the Hardware Implementation pane. See the “Hardware Implementation
Options” section of the Real-Time Workshop User’s Guide.

info.xml
This file provides information to MATLAB that specifies where to display the
target toolbox on the MATLAB Start button menu.

Example info.xml File
This example shows you how to set up access to a target’s demo page and
target preferences GUI from the MATLAB Start button. See also “Making
Target Preferences Available to the End User” on page 8-10.

<productinfo>

<matlabrelease>13</matlabrelease>
<name>Embedded Target for MYTARGET</name>
<type>simulink</type>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>

<list>

<listitem>
<label>Demos</label>
<callback>demo simulink 'Embedded Target for MYTARGET'</callback>

4-17

4 Target Directories, Paths, and Files

<icon>$toolbox/matlab/icons/demoicon.gif</icon>
</listitem>

<listitem>
<label>MYTARGET Target Preferences</label>
<callback>mytargetTargetPrefs =
RTW.TargetPrefs.load('mytarget.prefs');
gui(mytargetTargetPrefs); </callback>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>
</listitem>

</list>
</productinfo>

mytarget_overview.html
By convention, this file serves as home page for the target demos.

The <description> field in demos.xml should point to
mytarget_overview.html (see “mytarget/blocks/demos.xml” on
page 4-8).

Example mytarget_overview.html File

<html>

<head><title>Embedded Target for MYTARGET</title></head><body>

<p style="color:#990000; font-weight:bold; font-size:x-large">Embedded Target

for MYTARGET Demonstration Model</p>

<p>This demo provides a simple model that allows you to generate an executable

for a supported target board. You can then download and run the executable and

set breakpoints to study and monitor the execution behavior.</p>

</body>

</html>

4-18

Additional Directories and Files for Externally Developed Targets

Additional Directories and Files for Externally Developed
Targets

• “mytarget/mytarget/mytarget_setup.m” on page 4-19

• “mytarget/mytarget/doc” on page 4-19
If you are developing an embedded target that is not installed into
the MATLAB tree, you should provide a target setup script and target
documentation materials within mytarget/mytarget, for the convenience
of your users.

mytarget/mytarget/mytarget_setup.m
This M-file script adds the necessary paths for your target to the MATLAB
path. Your documentation should instruct users to run the script when
installing the target.

You should include a call to the MATLAB function savepath in your
mytarget_setup.m script. This function saves the added paths, so users need
to run mytarget_setup.m only once.

The following code is an example mytarget_setup.m file.

function mytarget_setup()
curpath = pwd;
tgtpath = curpath(1:end-length('\mytarget'));
addpath(fullfile(tgtpath, 'mytarget'));
addpath(fullfile(tgtpath, 'dev_tool1'));
addpath(fullfile(tgtpath, 'blocks'));
addpath(fullfile(tgtpath, 'mytargetdemos'));
savepath;
disp('MYTARGET Target Path Setup Complete.');

mytarget/mytarget/doc
You should put all documentation related to your target in the directory
mytarget/mytarget/doc.

4-19

4 Target Directories, Paths, and Files

4-20

5

System Target Files

Introduction (p. 5-2) Overview of system target files.

System Target File Naming and
Location Conventions (p. 5-3)

Detailed structure of system target
files.

System Target File Structure (p. 5-4) Detailed structure of system target
files.

Defining and Displaying Custom
Target Options (p. 5-22)

Compatibility issues related to
the definition and display of
target-specific options in the
Configuration Parameters GUI.

Tips and Techniques for Customizing
Your STF (p. 5-31)

Information on techniques for
customizing your STF.

Tutorial: Creating a Custom Target
Configuration (p. 5-38)

Exercise in creation of ERT-based
target.

5 System Target Files

Introduction
The system target file (STF) exerts overall control of the code generation stage
of the build process. The STF also lets you control the presentation of your
target to the end user. The STF provides

• Definitions of variables that are fundamental to the build process, such as
code format to be generated

• The main entry point to the top-level TLC program that generates code

• Target information for display in the System Target File Browser

• A mechanism for defining target-specific code generation options (and other
parameters affecting the build process) and for displaying them in the
Configuration Parameters dialog box

• A mechanism for inheriting options from another target (such as the
Embedded Real-Time (ERT) target)

This chapter provides information on the structure of the STF, guidelines for
customizing an STF, and a basic tutorial that helps you get a skeletal STF
up and running.

Note that, although the STF is a Target Language Compiler (TLC) file, it
contains embedded M-code. Before creating or modifying an STF, you should
acquire a working knowledge of TLC and of the M language. The Real-Time
Workshop Target Language Compiler document and the M-File Programming
section of the MATLAB documentation describe the features and syntax of
both the TLC and MATLAB languages.

While reading this chapter, you may want to refer to the STFs provided with
Real-Time Workshop. Most of these files are stored in the target-specific
directories under matlabroot/rtw/c. Additional STFs are stored under
matlabroot/toolbox/rtw/targets.

5-2

System Target File Naming and Location Conventions

System Target File Naming and Location Conventions
An STF must be located in a directory on the MATLAB path for the target
to be properly displayed in the System Target File Browser and invoked in
the build process. Follow the location and naming conventions for STFs and
related target files given in Chapter 4, “Target Directories, Paths, and Files”.
Note particularly the “Directory and File Naming Conventions” on page 4-3.

The rules for the location of target files differ, depending upon whether the
target is internally developed at The MathWorks or not:

• For embedded targets developed by The MathWorks that are installed
with MATLAB, the target root directory should be located under
matlabroot/toolbox/rtw/targets/.

• For embedded targets not developed by The MathWorks, the target root
directory should not be located anywhere in the MATLAB directory tree
(that is, in or under the matlabroot directory). This restriction exists
because installing a new version of MATLAB (or reinstalling the current
version) recreates the MATLAB directories, which deletes any custom
target directories existing within the MATLAB tree.

5-3

5 System Target Files

System Target File Structure
• “Overview” on page 5-4

• “Header Comments” on page 5-7

• “TLC Configuration Variables” on page 5-9

• “TLC Program Entry Point and Related %includes” on page 5-10

• “RTW_OPTIONS Section” on page 5-11

• “rtwgensettings Structure” on page 5-19

• “Additional Code Generation Options” on page 5-21

• “Model Reference Considerations” on page 5-21

Overview
This section is a guide to the structure and contents of an STF. The following
listing shows the general structure of an STF. Note that this is not a complete
code listing of an STF. The listing consists of excerpts from each of the sections
that make up an STF.

%%----------------------------

%% Header Comments Section

%%----------------------------

%% SYSTLC: Example Real-Time Target

%% TMF: my_target.tmf MAKE: make_rtw EXTMODE: ext_comm

%% Inital comments contain directives for STF Browser.

%% Documentation, date, copyright, and other info may follow.

...

%selectfile NULL_FILE

...

%%----------------------------

%% TLC Configuration Variables Section

%%----------------------------

%% Assign code format, language, target type.

%%

%assign CodeFormat = "Embedded-C"

%assign TargetType = "RT"

%assign Language = "C"

%%

5-4

System Target File Structure

%%----------------------------

%% (OPTIONAL) Import Target Settings

%%----------------------------

%include "mytarget_settings.tlc"

%%

%%----------------------------

%% TLC Program Entry Point

%%----------------------------

%% Call entry point function.

%include "codegenentry.tlc"

%%

5-5

5 System Target Files

%%----------------------------

%% (OPTIONAL) Generate Files for Build Process

%%----------------------------

%include "mytarget_genfiles.tlc"

%%----------------------------

%% RTW_OPTIONS Section

%%----------------------------

/%

BEGIN_RTW_OPTIONS

%% Define rtwoptions structure array. This array defines target-specific

%% code generation variables, and controls how they are displayed.

rtwoptions(1).prompt = 'example code generation options';

...

rtwoptions(6).prompt = 'Show eliminated blocks';

rtwoptions(6).type = 'Checkbox';

...

%--%

% Configure RTW code generation settings %

%--%

...

%%----------------------------

%% rtwgensettings Structure

%%----------------------------

%% Define suffix string for naming build directory here.

rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

%% (OPTIONAL) target inheritance declaration

rtwgensettings.DerivedFrom = 'ert.tlc';

%% (OPTIONAL) r14 callback compatibility declaration

rtwgensettings.Version = '1';

%% (OPTIONAL) other rtwGenSettings fields...

...

END_RTW_OPTIONS

%/

5-6

System Target File Structure

%%----------------------------

%% targetComponentClass - MATHWORKS INTERNAL USE ONLY

%% REMOVE NEXT SECTION FROM USER_DEFINED CUSTOM TARGETS

%%----------------------------

/%

BEGIN_CONFIGSET_TARGET_COMPONENT

targetComponentClass = 'Simulink.ERTTargetCC';

END_CONFIGSET_TARGET_COMPONENT

%/

If you are creating a custom target based on an existing STF,
you must remove the targetComponentClass section (bounded
by the directives BEGIN_CONFIGSET_TARGET_COMPONENT and
END_CONFIGSET_TARGET_COMPONENT). This section is reserved for the use of
targets developed internally by The MathWorks.

Header Comments
These lines at the head of the file are formatted as TLC comments. They
provide required information to the System Target File Browser and to the
build process. Note that you must place the browser comments at the head of
the file, before any other comments or TLC statements.

The presence of the comments enables Real-Time Workshop to detect STFs.
When the System Target File Browser is opened, Real-Time Workshop
scans the MATLAB path for TLC files that have correctly formatted header
comments. The comments contain the following directives:

• SYSTLC: This string is a descriptor that appears in the browser.

• TMF: Name of the template makefile (TMF) to use during build process.
When the target is selected, this filename is displayed in the Template
makefile field of the Real-Time Workshop pane of the Configuration
Parameters dialog box.

• MAKE: make command to use during build process. When the target is
selected, this command is displayed in the Make command field of the
Real-Time Workshop pane of the Configuration Parameters dialog box.

• EXTMODE: Name of external mode interface file (if any) associated
with your target. If your target does not support external mode, use
no_ext_comm.

5-7

5 System Target Files

The following header comments are from matlabroot/rtw/c/ert/ert.tlc.

%% SYSTLC: Real-Time Workshop Embedded Coder (no auto configuration) \

%% TMF: ert_default_tmf MAKE: make_rtw EXTMODE: ext_comm

.

.

.

%% SYSTLC: Visual C/C++ Project Makefile only for the Real-Time Workshop Embedded Coder\

%% TMF: ert_msvc.tmf MAKE: make_rtw EXTMODE: ext_comm

Note that you can specify more than one group of directives in the header
comments. Each such group is displayed as a different target configuration in
the System Target File Browser. In the above example, the first two lines of
code specify the default configuration of the ERT target. The last two lines
specify a configuration that generates a Visual C/C++ project makefile, using
the template makefile ert_msvc.tmf. The figure below shows how these
configurations appear in the System Target File Browser.

See “Tutorial: Creating a Custom Target Configuration” on page 5-38 for an
example of customized header comments.

5-8

System Target File Structure

TLC Configuration Variables
This section of the STF assigns global TLC variables that affect the overall
code generation process.

For an embedded target, in almost all cases you should simply use the global
TLC variable settings used by the ERT target (ert.tlc). It is especially
important that your STF select the Embedded-C code format. Make sure
values are assigned to the following variables:

• CodeFormat: The CodeFormat variable selects one of the available
code formats. The Embedded-C format is used by the ERT target. Your
ERT-based target should specify Embedded-C format. Embedded-C format
is designed for production code, minimal memory usage, static memory
allocation, and a simplified interface to generated code.

For information on other code formats, see the “Generated Code Formats”
chapter of the Real-Time Workshop documentation.

• Language: The only valid value is C, which enables support for C and C++
code generation as specified by the configuration parameter TargetLang
(see “Configuration Parameter Reference” for more information).

• TargetType: Real-Time Workshop defines the preprocessor symbols RT and
NRT to distinguish simulation code from real-time code. These symbols
are used in conditional compilation. The TargetType variable determines
whether RT or NRT is defined.

Most targets are intended to generate real-time code. They assign
TargetType as follows.

%assign TargetType = "RT"

5-9

5 System Target Files

Some targets, such as the Simulink Accelerator, generate code for use in
non-real-time only. Such targets assign TargetType as follows.

%assign TargetType = "NRT"

See “Other Preprocessor Symbols” on page 10-8 for further information
on the use of these symbols.

TLC Program Entry Point and Related %includes
The code generation process normally begins with codegenentry.tlc. The
STF invokes codegenentry.tlc as follows.

%include "codegenentry.tlc"

Note codegenentry.tlc and the lower-level TLC files assume that
CodeFormat, TargetType, and Language have been correctly assigned. Set
these variables before including codegenentry.tlc.

If you need to implement target-specific code generation features, you should
include the TLC files mytarget_settings.tlc and mytarget_genfiles.tlc
in your STF. These files provide a mechanism for executing custom TLC
code before and after invoking codegenentry.tlc. For information on these
mechanisms, see

• “Using mytarget_settings.tlc” on page 5-31 for an example of custom TLC
code for execution before the main code generation entry point.

• “Using mytarget_genfiles.tlc” on page 5-34 for an example of custom TLC
code for execution after the main code generation entry point.

• “Understanding and Using the Build Process” on page 3-9 for general
information on the build process, and for information on other build process
customization hooks.

Another way to customize the code generation process is to call lower-level
functions (normally invoked by codegenentry.tlc) directly, and include your
own TLC functions at each stage of the process. This approach should be
taken with caution. See the Real-Time Workshop Target Language Compiler
document for guidelines.

5-10

System Target File Structure

The lower-level functions called by codegenentry.tlc are

• genmap.tlc: maps block names to corresponding language-specific block
target files.

• commonsetup.tlc: sets up global variables.

• commonentry.tlc: starts the process of generating code in the format
specified by CodeFormat.

RTW_OPTIONS Section
The RTW_OPTIONS section is bounded by the directives:

/%
BEGIN_RTW_OPTIONS
.
.
.
END_RTW_OPTIONS
%/

The first part of the RTW_OPTIONS section defines an array of rtwoptions
structures. This structure is discussed in “rtwoptions Structure” on page 5-12.

The second part of the RTW_OPTIONS section defines rtwgensettings, a
structure defining the build directory name and other settings for the
code generation process. See “rtwgensettings Structure” on page 5-19 for
information about rtwgensettings.

Note Release 14 introduced significant changes in the way that target
options are defined, displayed, and operated. If you have developed a target
for an earlier release or are developing a new target for Release 14 or later,
see “Defining and Displaying Custom Target Options” on page 5-22. This is
particularly important if your STF uses rtwoptions callbacks.

5-11

5 System Target Files

rtwoptions Structure
The fields of the rtwoptions structure define variables and associated user
interface elements to be displayed in the Real-Time Workshop pane of the
Configuration Parameters dialog box. Using the rtwoptions structure array,
you can define target-specific options displayed in the dialog box and organize
options into categories. You can also write callback functions to specify how
these options are processed.

When the Real-Time Workshop pane opens, the rtwoptions structure array
is scanned and the listed options are displayed. Each option is represented
by an assigned user interface element (check box, edit field, menu, or
pushbutton), which displays the current option value.

The user interface elements can be in an enabled or disabled (grayed-out)
state. If an option is enabled, the user can change the option value.

You can also use the rtwoptions structure array to define special NonUI
elements that cause callback functions to be executed, but that are not
displayed in the Real-Time Workshop pane. See “NonUI Elements” on
page 5-17 for details.

The elements of the rtwoptions structure array are organized into groups.
Each group of items begins with a header element of type Category. The
default field of a Category header must contain a count of the remaining
elements in the category.

The Category header is followed by options to be displayed on the Real-Time
Workshop pane. The header in each category is followed by one or more
option definition elements.

The way in which target option groups are displayed depends on whether or
not the STF has been converted for compatibility with Release 14 or later. In
Release 14 or later compatible targets, each category of options corresponds to
options listed under Real-Time Workshop in the Configuration Parameters
dialog box. (See “Target Options Display in Release 14 or Later” on page 5-28.)

The table rtwoptions Structure Fields Summary on page 5-14 summarizes the
fields of the rtwoptions structure.

5-12

System Target File Structure

Example rtwoptions Structure. The following example is excerpted from
matlabroot/rtw/c/rtwsfcn/rtwsfcn.tlc, the STF for the S-function target.
The code defines an rtwoptions structure array of three elements. The
default field of the first (header) element is set to 2, indicating the number
of elements that follow the header.

rtwoptions(1).prompt = 'S-function target options';

rtwoptions(1).type = 'Category';

rtwoptions(1).enable = 'on';

rtwoptions(1).default = 2; % number of items under this category

% excluding this one.

rtwoptions(1).popupstrings = '';

rtwoptions(1).tlcvariable = '';

rtwoptions(1).tooltip = '';

rtwoptions(1).callback = '';

rtwoptions(1).makevariable = '';

rtwoptions(2).prompt = 'Create New Model';

rtwoptions(2).type = 'Checkbox';

rtwoptions(2).default = 'on';

rtwoptions(2).tlcvariable = 'CreateModel';

rtwoptions(2).makevariable = 'CREATEMODEL';

rtwoptions(2).tooltip = ...

['Create a new model containing the generated Real-Time Workshop S-Function

block inside it'];

rtwoptions(3).prompt = 'Use Value for Tunable Parameters';

rtwoptions(3).type = 'Checkbox';

rtwoptions(3).default = 'off';

rtwoptions(3).tlcvariable = 'UseParamValues';

rtwoptions(3).makevariable = 'USEPARAMVALUES';

rtwoptions(3).tooltip = ...

['Use value for variable instead of variable name in generated block mask

edit fields'];

The first element adds S-function target options under Real-Time
Workshop in the Configuration Parameters dialog box. The options defined
in rtwoptions(2) and rtwoptions(3) display as shown in the next figure.

5-13

5 System Target Files

If you want to define a large number of options, you can define multiple
Category groups within a single system target file.

Note the rtwoptions structure and callbacks are written in M-code, although
they are embedded in a TLC file. To verify the syntax of your rtwoptions
structure definitions and code, you can execute the commands in MATLAB by
copying and pasting them to the MATLAB Command Window.

For further examples of target-specific rtwoptions definitions, see “Using
rtwoptions: Real-Time Workshop Options Example Target” on page 5-17.

rtwoptions Structure Fields Summary on page 5-14 lists the fields of the
rtwoptions structure.

rtwoptions Structure Fields Summary

Field Name Description

callback See “Defining and Displaying Custom Target
Options” on page 5-22 for information on
converting callbacks for Release 14 or later
compatibility. For examples of callback usage,
see also “Using rtwoptions: Real-Time Workshop
Options Example Target” on page 5-17.

5-14

System Target File Structure

rtwoptions Structure Fields Summary (Continued)

Field Name Description

closecallback
(obsolete)

If your target uses closecallback, convert to
rtwgensettings.PostApplyCallback instead (see
“rtwgensettings Structure” on page 5-19).

See “Defining and Displaying Custom Target
Options” on page 5-22 for information on
converting callbacks for Release 14 or later
compatibility. For examples of callback usage,
see also “Using rtwoptions: Real-Time Workshop
Options Example Target” on page 5-17.

closecallback is ignored in Release 14 or later.
Prior to Release 14, closecallback specified an
M-code function to be executed when the target
options dialog box closes.

default Default value of the option (empty if the type is
Pushbutton).

enable Must be on or off. If on, the option is displayed as
an enabled item; otherwise, as a disabled item.

makevariable Template makefile token (if any) associated with
option. The makevariable is expanded during
processing of the template makefile. See “Template
Makefile Tokens” on page 6-2.

NonUI Element that is not displayed, but is used to invoke
a close or open callback. See “NonUI Elements”
on page 5-17.

5-15

5 System Target Files

rtwoptions Structure Fields Summary (Continued)

Field Name Description

opencallback
(obsolete)

If your target uses opencallback,
we strongly recommend that you use
rtwgensettings.SelectCallback instead (see
“rtwgensettings Structure” on page 5-19).

If you must maintain use of opencallback, see
“Defining and Displaying Custom Target Options”
on page 5-22 for information on converting
callbacks for Release 14 or later compatibility.
For examples of callback usage, see also “Using
rtwoptions: Real-Time Workshop Options Example
Target” on page 5-17.

Prior to Release 14, opencallback specified
M-code to be executed when the selected the target
from the System Target File Browser, or during
model loading. The purpose of opencallback is to
synchronize the displayed value of the option with
its previous setting.

popupstrings If type is Popup, popupstrings defines the items
in the menu. Items are delimited by the "|"
(vertical bar) character. The following example
defines the items of the MAT-file variable name
modifier menu used by the GRT target.

'rt_|_rt|none'

prompt Label for the option.

tlcvariable Name of TLC variable associated with the option.

tooltip Help string displayed when mouse is over the item.

type Type of element: Checkbox, Edit, NonUI, Popup,
Pushbutton, or Category.

5-16

System Target File Structure

NonUI Elements. Elements of the rtwoptions array that have type NonUI
exist solely to invoke callbacks. A NonUI element is not displayed in the
Configuration Parameters dialog box. You can use a NonUI element if you
want to execute a callback that is not associated with any user interface
element, when the dialog box opens or closes. Only the opencallback and
closecallback fields of a NonUI element have significance. See the next
section, “Using rtwoptions: Real-Time Workshop Options Example Target”
on page 5-17 for an example.

Using rtwoptions: Real-Time Workshop Options Example
Target
A working system target file, with M-file callback functions, has been
provided as an example of how to use the rtwoptions structure to display and
process custom options on the Real-Time Workshop pane. The examples are
compatible with the Release 14 or later callback API (described in “Defining
and Displaying Custom Target Options” on page 5-22).

The example target files are in the directory:

matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo

The example target files are

• usertarget.tlc: The example system target file. This file defines several
menus, check boxes, an edit field, and a nonUI item. The file demonstrates
the use of callbacks, open callbacks, and closed callbacks.

• usertargetcallback.m: An M-file callback invoked by a menu.

• usertargetclosecallback.m: An M-file callback invoked by an edit field.

Refer to the example files while reading this section. The example system
target file, usertarget.tlc: demonstrates the use of callbacks associated
with the following UI elements:

• The Execution Mode menu executes an open callback that is coded inline
within the STF. This callback displays a message and sets a model property
with a set_param().

• The Real-Time Interrupt Source menu executes a callback defined in
an external M-file, usertargetcallback.m. The TLC variable associated

5-17

5 System Target Files

with the menu is passed in to the callback, which displays the menu’s
current value.

• The edit field Signal Logging Buffer Size in Doubles executes a close
callback defined in an external M-file, usertargetclosecallback.m. The
TLC variable associated with the edit field is passed in to the callback.

• The External Mode check box executes an open callback that is coded
inline within the STF.

• The NonUi item defined in rtwoptions(8) executes open and close
callbacks that are coded inline within the STF. Each callback simply prints
a status message.

We suggest that you study the example code while interacting with the
example target options in the Configuration Parameters dialog box. To
interact with the example target file,

1 Make matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo your
working directory.

2 Open any model of your choice.

3 Open the Configuration Parameters dialog box and click Real-Time
Workshop.

4 Click Browse. The System Target File Browser opens. Select Real-Time
Workshop Options Example Target. Then click OK.

5 Observe that the Real-Time Workshop pane contains two custom
sub-tabs: userPreferred target options (I) and userPreferred target
options (II).

6 As you interact with the options in these two categories and open and close
the Configuration Parameters dialog box, observe the messages displayed
in the MATLAB Command Window. These messages are printed from code
in the STF, or from callbacks invoked from the STF.

5-18

System Target File Structure

rtwgensettings Structure
The final part of the STF defines the rtwgensettings structure. This
structure stores information that is written to the model.rtw file and used
by the build process. The rtwgensettings fields of most interest to target
developers are

• rtwgensettings.Version: This version compatibility property identifies
targets use Release 14 or later compatible rtwoptions callbacks. Do not
use this field unless you have converted your callbacks, as described in
“Using rtwoptions Callbacks in Release 14 or Later” on page 5-22.

• rtwgensettings.DerivedFrom: This string property defines the system
target file from which options are to be inherited. See “Target Options
Inheritance in Release 14 or Later” on page 5-26.

• rtwgensettings.SelectCallback: this property specifies a
SelectCallback function. SelectCallback is associated with the target
rather than with any of its individual options. The SelectCallback
function is triggered when the user selects a target with the System Target
File browser. When a model created prior to Release 14 is opened, the
SelectCallback function is also triggered during model loading.

The SelectCallback function is useful for setting up (or disabling)
configuration parameters specific to the target.

The following code installs a SelectCallback function:

rtwgensettings.SelectCallback = ['my_select_callback_handler(hDlg, hSrc)'];

The arguments to the SelectCallback function (hDlg, hSrc) are handles
to private data used by the callback API functions, as described in “Using
rtwoptions Callbacks in Release 14 or Later” on page 5-22.

Note If you have developed a custom target and you want it to be
compatible with model referencing, you must implement a SelectCallback
function to declare model reference compatibility. See Chapter 7,
“Supporting Model Referencing”.

5-19

5 System Target Files

• rtwgensettings.ActivateCallback: this property specifies an
ActivateCallback function. The ActivateCallback function is triggered
when the active configuration set of the model changes. This could
happen during model loading, and also when the user changes the active
configuration set.

The following code installs an ActivateCallback function:

rtwgensettings.ActivateCallback = ['my_activate_callback_handler(hDlg, hSrc)'];

The arguments to the ActivateCallback function (hDlg, hSrc) are
handles to private data used by the callback API functions, as described in
“Using rtwoptions Callbacks in Release 14 or Later” on page 5-22.

• rtwgensettings.PostApplyCallback: this property specifies a
PostApplyCallback function. The PostApplyCallback function is
triggered when the user clicks the Apply or OK button after editing options
in the Configuration Parameters dialog box. The PostApplyCallback
function is called after the changes have been applied to the configuration
set.

The following code installs an PostApplyCallback function:

rtwgensettings.PostApplyCallback = ['my_postapply_callback_handler(hDlg, hSrc)'];

The arguments to the PostApplyCallback function (hDlg, hSrc) are
handles to private data used by the callback API functions, as described in
“Using rtwoptions Callbacks in Release 14 or Later” on page 5-22.

• rtwgensettings.BuildDirSuffix: Most targets define a string that
identifies build directories created by the target. The build process appends
the string defined in the rtwgensettings.BuildDirSuffix field to the
model name to form the name of the build directory. For example, if you
define rtwgensettings.BuildDirSuffix as follows

rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

the build directories are named model_mytarget_rtw.

5-20

System Target File Structure

Additional Code Generation Options
“Configuring Generated Code with TLC” in the Real-Time Workshop
documentation describes additional TLC code generation variables. End users
of any target can assign these variables by entering statements of the form

-aVariable=val

in the TLC options field of the Real-Time Workshop pane.

However, the preferred approach is to assign these variables in the STF using
statements of the form:

%assign Variable = val

For readability, we recommend that you add such assignments in the section
of the STF after the comment Configure RTW code generation settings.

Model Reference Considerations
See Chapter 7, “Supporting Model Referencing” for important information on
STF and other modifications you may need to make to support the Real-Time
Workshop model referencing features.

5-21

5 System Target Files

Defining and Displaying Custom Target Options
• “Upgrading Custom Targets to Release 14 or Later” on page 5-22

• “Using rtwoptions Callbacks in Release 14 or Later” on page 5-22

• “Target Options Inheritance in Release 14 or Later” on page 5-26

• “Target Options Display in Release 14 or Later” on page 5-28

Upgrading Custom Targets to Release 14 or Later
In Release 14 or later, you view the Simulink model options defined in the
active configuration set using the Configuration Parameters dialog box or
Model Explorer. These views, which replaced the Simulation Parameters
dialog box used in releases before Release 14, feature extensive changes in the
appearance and layout of code generation options and other target-specific
options for Real-Time Workshop targets. For customers upgrading from a
release before Release 14, this section describes the following compatibility
issues related to the definition and display of target-specific options for
custom targets:

• rtwoptions callbacks: If the rtwoptions array in your custom system
target file contains callbacks, convert your callbacks to use the callback
compatibility API provided in Release 14 or later.

• Target options inheritance: If your custom target is derived from another
target and inherits options, change your system target file to use the
inheritance mechanism provided in Release 14 or later.

• Display of target options: Your target options will display differently in
Release 14 or later, and you may want to reorganize them.

Using rtwoptions Callbacks in Release 14 or Later
In releases before Release 14, the callback, opencallback, and
closecallback fields of the rtwoptions structure array (see “rtwoptions
Structure” on page 5-12) specify optional M-code functions that are called
when the value of an option changes or when the Simulation Parameters
dialog box opens or closes. If your custom system target file does not specify
any such callbacks, your target operates transparently in the Configuration
Parameters dialog box or Model Explorer. However, your target options are

5-22

Defining and Displaying Custom Target Options

displayed differently, as described in “Target Options Display in Release 14 or
Later” on page 5-28.

If your custom target does specify callbacks, compatibility issues arise,
because many callbacks depend upon features of the old-style (pre-Release 14)
Simulation Parameters dialog box. For example, a change in the state of one
GUI element (such as a check box) may invoke a callback that attempts to get
a handle to another GUI element in order to enable or disable it.

In Release 14 or later, Real-Time Workshop supports a callback compatibility
API that lets your existing rtwoptions callbacks operate under the
Configuration Parameters dialog box and Model Explorer views. This is
described in the next section, “How to Convert Your rtwOptions Callbacks”
on page 5-23. We strongly recommend that you convert your callbacks for
Release 14 or later compatibility. If you do not want to do so, see “Operation of
Targets with Unconverted Callbacks” on page 5-25 to understand how your
custom target runs in the Release 14 or later environment.

How to Convert Your rtwOptions Callbacks
The callback conversion API provides variables and accessor functions that
allow your callbacks to access graphical elements associated with target
options. Also, a version compatibility property, rtwgensettings.Version,
has been added to the rtwgensettings structure in the system target file.
This property identifies targets that have been converted to use Release 14 or
later compatible callbacks.

The callback API variables are

• model: Handle of the current Simulink model. model can be used as an
argument to get_param and set_param calls. If you use such calls, you
do not need to change them.

• hSrc: This variable is restricted to use in the callback API functions
described below. hSrc provides a handle to private data used by the callback
API functions. Do not set this variable or use it for any other purpose.

• hDlg: This variable is restricted to use in the callback API functions
described below. hDlg provides a handle to private data used by he callback
API functions. Do not set this variable or use it for any other purpose.

5-23

5 System Target Files

The callback API provides accessor functions that let you read and set target
option values, and enable or disable options. In the function descriptions
below, the tlc_var_name argument is the name of the tlcvariable defined for
the option in the rtwoptions struct. The callback API accessor functions are

• slConfigUIGetVal(hDlg, hSrc, 'tlc_var_name'): Returns the current
value of the option specified by the 'tlc_var_name' argument. The data
type of the return value depends on the data type of the option.

• slConfigUISetVal:(hDlg, hSrc, 'tlc_var_name', value): Sets the
option specified by the 'tlc_var_name' argument to the value passed in
the value argument.

• slConfigUISetEnabled(hDlg, hSrc, 'tlc_var_name', flag): Enables
or disables the option specified by the 'tlc_var_name' argument. The
value passed in flag should be either 1 (to enable the option) or 0 (to
disable the option).

To convert your rtwOptions callbacks,

1 Identify all references to the old Simulation Parameters dialog box handle
(such as dialogFig or objects accessed through dialogFig) in your
callbacks.

2 Replace such references with equivalent calls to the callback API functions.
Your code should use only the API calls and variables described above to
reference options. See the files described in “Example Callback Code” on
page 5-25.

3 If your target inherits options from an existing target, you should also
convert your target to use the new inheritance mechanism. To learn how to
do this, see “Target Options Inheritance in Release 14 or Later” on page
5-26.

4 Declare that your system target file is compliant with the callback API by
adding the following statement in the Configure RTW code generation
settings section of the system target file.

rtwgensettings.Version = '1';

rtwoptions callbacks are executed only if rtwgensettings.Version is
set as shown.

5-24

Defining and Displaying Custom Target Options

Note If your target defines opencallback functions, open callbacks are called
during model loading, as well as when the you select the target from the
System Target File Browser.

Example Callback Code
An example system target file and callback handlers are available in the
directory matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo. The
example files illustrate how to use Release 14 or later compatible callbacks
with different types of GUI elements. The files are

• usertarget.tlc: The example system target file. This file defines several
menus, check boxes, an edit field, and a nonUI item. The file demonstrates
the use of callbacks, open callbacks, and close callbacks.

• usertargetcallback.m: An M-file callback invoked by a popup.

• usertargetclosecallback.m: An M-file callback invoked by an edit field.

Operation of Targets with Unconverted Callbacks
Callback conversion is recommended, but not required. If you do not want to
convert your callbacks, your target operates as follows:

• When the target is selected with the System Target File Browser, the
target options are displayed in the Configuration Parameters dialog box
and Model Explorer, as described in “Target Options Display in Release 14
or Later” on page 5-28. However, any callbacks specified in the rtwoptions
array are ignored.

• An additional button labeled Launch old simprm dialog is displayed at
the bottom of all target-specific pages of the Configuration Parameters
dialog box and Model Explorer. When the user clicks this button, the old
Simulation Parameters dialog box opens. As the user interacts with the
dialog box, existing callbacks are executed.

5-25

5 System Target Files

The figure below shows the Model Explorer view.

Note If your custom target uses unconverted callbacks, you should inform
end users of your target that they should open and use the old Simulation
Parameters dialog box when setting target options. If they do not do so,
options are not set correctly.

Target Options Inheritance in Release 14 or Later
In releases before Release 14, many custom targets used the technique of
merging rtwoptions structures in order to derive or inherit options from an
existing target. For example, the following code, from a Release 13 target,
creates an rtwoptions structure and inherits the rtwoptions of the ERT
target merging them into the structure.

/%

BEGIN_RTW_OPTIONS

rtwoption_index = 0;

rtwoption_index = rtwoption_index + 1;

rtwoptions(rtwoption_index).prompt = 'mytargets Options';

rtwoptions(rtwoption_index).type = 'Category';

rtwoptions(rtwoption_index).enable = 'on';

rtwoptions(rtwoption_index).default = 5; % number of items under mytargets

5-26

Defining and Displaying Custom Target Options

rtwoptions(rtwoption_index).popupstrings = '';

rtwoptions(rtwoption_index).tlcvariable = '';

rtwoptions(rtwoption_index).tooltip = '';

rtwoptions(rtwoption_index).callback = '';

rtwoptions(rtwoption_index).makevariable = '';

%other rtwoptions elements not shown here

...

% Inherit ERT options

file = fullfile(matlabroot, 'rtw', 'c', 'ert', 'ert.tlc');

propsObj = tlc.rtwoptions(file);

props = propsObj.getOptions;

rtwoptions = propsObj.combineCategories(props,rtwoptions);

Releases 14 and later support a new, simplified inheritance mechanism.
The string property rtwgensettings.DerivedFrom has been added to the
rtwgensettings structure. This property defines the system target file from
which options are to be inherited. You should convert your custom target to
use this mechanism as follows:

1 Remove old inheritance code (such as the four line after the %Inherit ERT
options comment in the example above).

2 Set the rtwgensettings.DerivedFrom property as in the following example

rtwgensettings.DerivedFrom = 'stf.tlc';

where stf is the name of the system target file from which options are to
be inherited. For example:

rtwgensettings.DerivedFrom = 'ert.tlc';

When the Configuration Parameters dialog box or Model Explorer executes
this line of code, it includes the options from stf.tlc automatically. If
stf.tlc is a MathWorks internal system target file that has been converted
to a new layout, the dialog box displays the inherited options using the new
layout.

5-27

5 System Target Files

Target Options Display in Release 14 or Later
In the Simulation Parameters dialog box present in releases before Release
14, target options are organized into functional groups, displayed under
control of the Category menu in the Real-Time Workshop pane. The
items in the Category menu correspond to the elements of the rtwoptions
structure array. Each group of rtwoptions elements is delimited by a header
element of type Category.

The following figure shows a typical group of target options as displayed in
the old-style Simulation Parameters dialog box.

The new Configuration Parameters dialog box preserves the organization
of your custom target’s rtwoptions structure array. However, the
Category menu has been replaced by a tabbed selection mechanism. In
the Model Explorer view, each category of options corresponds to a tab. In
the Configuration Parameters dialog box view, each category of options
corresponds to an element of the list on the left pane. The spacing and layout
of options within each group of options is controlled by Real-Time Workshop.

5-28

Defining and Displaying Custom Target Options

The figure below shows the same target options, as organized and displayed
in the Model Explorer view. This figure shows how the target options appear
before any Release 14 or later compatibility conversions are made.

After converting the above target to use Release 14 or later compatible
callbacks and inheritance options, the target’s inherited options are displayed
in a more compact form (under categories such as Interface, Templates, and
so on) and the Launch old simprm dialog button is removed, as shown
in this figure.

5-29

5 System Target Files

Real-Time Workshop provides the organization of options described above
as a default layout. This lets you continue to use your custom targets with
minimal change. This default differs considerably from many of the targets
developed internally at The MathWorks (such as the ERT and GRT targets).
These MathWorks targets have been converted to use technologies and
features that are currently available only to developers at The MathWorks.
In a future release, The MathWorks plans to provide information and APIs
that let you convert your custom targets to take full advantage of these
technologies and features.

5-30

Tips and Techniques for Customizing Your STF

Tips and Techniques for Customizing Your STF
• “Introduction” on page 5-31

• “Required and Recommended %includes” on page 5-31

• “Inherited Target Options” on page 5-35

• “Supporting Multiple Development Environments” on page 5-36

Introduction
The following sections include information on techniques for customizing
your STF, including

• How to invoke custom TLC code from your STF

• How to inherit target options from another STF

• Approaches to supporting multiple development environments with single
or multiple STFs

Required and Recommended %includes
If you need to implement target-specific code generation features, we
recommend that your STF include the TLC files mytarget_settings.tlc
and mytarget_genfiles.tlc.

mytarget_settings.tlc provides a mechanism for executing custom
TLC code before the main code generation entry point. See “Using
mytarget_settings.tlc” on page 5-31.

Once your STF has set up any required TLC environment, you must include
codegenentry.tlc to start the standard code generation process.

mytarget_genfiles.tlc provides a mechanism for executing custom
TLC code after the main code generation entry point. See “Using
mytarget_genfiles.tlc” on page 5-34.

Using mytarget_settings.tlc
This file is optional. Its purpose is to centralize global settings in the code
generation environment. Use mytarget_settings.tlc to

5-31

5 System Target Files

• Define required TLC paths with %addincludepath directives. You may
need to do this if you create target-specific TLC function libraries.

• Create records that store target-specific path information and preference
settings in the CompiledModel general record. This provides a clean
mechanism for passing this information into the TLC code generation
environment.

• Check user settings for code generation options. If incorrect or unsupported
option settings are found, issue the appropriate error or warning and abort
the build process if necessary.

mytarget_settings.tlc Example Code. In the TLC code example below,
the structure Settings is added to the CompiledModel record. The Settings
structure is loaded from the stored target preferences (see “Accessing Target
Preference Data from MATLAB” on page 8-12). The Settings structure stores
target preferences data fields Implementation and ImpPath.

After Settings is added to the CompiledModel record, the example code
handles inherited options. In this example, the target is assumed to have
inherited options from the ERT target. The code examines the settings of
inherited ERT code generation options. If the user has selected unsupported
options, warning or error messages are displayed. In some cases, selecting an
unsupported option causes the build process to terminate.

Conditional code at the end of the function allows display of the
Implementation and ImpPath fields in the MATLAB Command Window.

%selectfile NULL_FILE

%% Read user preferences for the target and add to CompiledModel

%assign prefs = FEVAL("RTW.TargetPrefs.load","mytarget.prefs","structure")

%addtorecord CompiledModel Settings prefs

%% Check for unsupported Embedded Coder options and error/warn appropriately

%if SuppressErrorStatus == 0

%assign SuppressErrorStatus = 1

%assign msg = "Suppressing Error Status as it is not used by this target."

%warning %<msg>

%endif

%if GenerateSampleERTMain == 1

5-32

Tips and Techniques for Customizing Your STF

%assign msg = "Generating an example main is not supported as the proper main

function is inherently generated. Unselect the \"Generate an example main program\"

checkbox under ERT code generation options."

%exit %<msg>

%endif

%if GenerateErtSFunction == 1

%assign msg = "Generating a Simulink S-Function is not supported. Unselect the

\"Create Simulink(S-Function) block\" checkbox under ERT code generation options."

%exit %<msg>

%endif

%if ExtMode == 1

%assign msg = "External Mode is not currently supported. Unselect the \"External

mode\" checkbox under ERT code generation options."

%exit %<msg>

%endif

%if MatFileLogging == 1

%assign msg = "MAT-file logging is not currently supported. Unselect the

\"MAT-file logging\" checkbox under ERT code generation options."

%exit %<msg>

%endif

%if MultiInstanceERTCode == 1

%assign msg = "Generate reuseable code is not currently supported. Unselect the

\"Generate reuseable code\" checkbox under ERT code generation options."

%exit %<msg>

%endif

%if GenFloatMathFcnCalls == "ISO_C"

%assign msg = "Target floating point math environments other than ANSI-C are not

currently supported. Select ANSI-C for the \"Target floating point math

environment\" option under ERT code generation options."

%exit %<msg>

%endif

5-33

5 System Target Files

%% To display added TLC settings for debugging purposes, set EchoConfigSettings to

1.

%assign EchoConfigSettings = 0

%if EchoConfigSettings

%selectfile STDOUT

###

IMPLEMENTATION is:

%<CompiledModel.Settings.Implementation>

IMPLEMENTATION path is:

%<CompiledModel.Settings.ImpPath>

###

%selectfile NULL_FILE

%endif

Using mytarget_genfiles.tlc
mytarget_genfiles.tlc (optional) is useful as a central file from which to
invoke any target-specific TLC files that generate additional files as part of
your target build process. For example, your target may create sub-makefiles
or project files for a development environment, or command scripts for a
debugger to do automatic downloads.

The build process can then invoke these generated files either directly from
the make process, or after the executable is created. This is done with the
STF_make_rtw_hook.m mechanism, as described in “Customizing the Target
Build Process with the STF_make_rtw Hook File” in the Real-Time Workshop
Embedded Coder User’s Guide.

The following TLC code shows an example mytarget_genfiles.tlc file.

%selectfile NULL_FILE

%assign ModelName = CompiledModel.Name

%% Create Debugger script
%assign model_script_file = "%<ModelName>.cfg"
%assign script_file = "debugger_script_template.tlc"

5-34

Tips and Techniques for Customizing Your STF

%if RTWVerbose
%selectfile STDOUT
Creating %<model_script_file>
%selectfile NULL_FILE

%endif

%include "%<script_file>"
%openfile bld_file = "%<model_script_file>"
%<CreateDebuggerScript()>
%closefile bld_file

Inherited Target Options
ert.tlc provides a basic set of code generation options for Real-Time
Workshop Embedded Coder. If your target is based on ert.tlc, your STF
should normally inherit the options defined in ERT.

Note The inheritance mechanism described in this section is available in
Release 14 or later. Targets developed prior to Release 14 should be converted
to use this mechanism as described in “Target Options Inheritance in Release
14 or Later” on page 5-26.

To make options inheritance simple, Real-Time Workshop provides the
rtwgensettings.DerivedFrom property. This string property defines the
system target file from which options are to be inherited. Set this property
as in the following example

rtwgensettings.DerivedFrom = 'stf.tlc';

where stf is the name of the system target file from which options are to be
inherited. For example, to inherit options from the ERT target.

rtwgensettings.DerivedFrom = 'ert.tlc';

5-35

5 System Target Files

Handling Unsupported Options
If your target does not support all options inherited from ert.tlc, you should
detect unsupported option settings and display a warning or error message.
In some cases, if a user has selected an option your target does not support,
you may need to abort the build process. For example, if your target does not
support the Generate an example main program option, the build process
should not be allowed to proceed if that option is selected.

We recommend that you handle these options in mytarget_settings.tlc.
See the example in “Using mytarget_settings.tlc” on page 5-31.

Even though your target may not support all inherited ERT options, it is
required that the ERT options are retained in the Real-Time Workshop
pane of the GUI. Do not simply remove unsupported options from the
rtwoptions structure in the STF. Options must be in the GUI to be scanned
by Simulink when it performs optimizations.

For example, you may want to prevent users from turning off the Single
output/update function option. It may seem safe to remove this option
from the GUI and simply assign the TLC variable CombineOutputUpdateFcns
to on. However, if the option is not included in the GUI, Simulink assumes
that output and update functions are not to be combined. Less efficient code is
generated as a result.

Supporting Multiple Development Environments
Your target may require support for multiple development environments (for
example, two or more cross-compilers) or multiple modes of code generation
(for example, generating a binary executable vs. generating a project file
for your compiler).

One approach to this requirement is to implement multiple STFs; each STF
invokes an appropriate template makefile for the development environment.
This amounts to providing two separate targets.

Another approach is to use a single STF that specifies multiple configurations
in its comment header. The code within the STF then checks the
target preferences to determine which template makefile to invoke. See
“mytarget_default_tmf.m Example Code” on page 6-13 for an example of how
to check target preferences for this information.

5-36

Tips and Techniques for Customizing Your STF

One drawback of using a single STF in this way is that the rtwoptions need
conditional sections if the target options are not the same for all of the
configurations the STF supports. The following example (from a hypothetical
example target) defines an rtwoptions menu element differently, depending
on the whether or not the PC (Windows) version of MATLAB is running. This
is determined by calling the MATLAB function ispc. On the PC, the menu
displays a choice of USB or serial ports to be used in communicating with a
target device. Otherwise, the menu displays a choice of UNIX logical devices.

if ispc
rtwoptions(rtwoption_index).default = 'USB';
rtwoptions(rtwoption_index).popupstrings =

'USB|COM1|COM2|COM3|COM4';
else

rtwoptions(rtwoption_index).default = '/dev/ttyS0';
rtwoptions(rtwoption_index).popupstrings =

'/dev/ttyS0|/dev/ttyS1|/dev/ttyS2|/dev/ttyS3';
end

5-37

5 System Target Files

Tutorial: Creating a Custom Target Configuration
• “Introduction” on page 5-38

• “my_ert_target Overview” on page 5-38

• “Creating Target Directories” on page 5-40

• “Create ERT-Based STF” on page 5-40

• “Create ERT-Based TMF” on page 5-46

• “Create Test Model and S-Function” on page 5-47

• “Verify Target Operation” on page 5-48

Introduction
The purpose of this tutorial is to guide you through the process of creating
an ERT-based target, my_ert_target. This exercise illustrates several tasks
that are usually required when creating a custom target:

• Setting up target directories and modifying the MATLAB path.

• Making modifications to a standard STF and TMF such that the custom
target is visible in the System Target File Browser, inherits ERT options,
displays target-specific options, and generates code with the default
host-based compiler.

• Testing the build process with the custom target, using a simple model that
incorporates an inlined S-function.

During this exercise you implement an operational, but skeletal, ERT-based
target. This target may be useful as a starting point in a complete
implementation of a custom embedded target.

my_ert_target Overview
In the following sections you create a skeletal target, my_ert_target. The
target inherits and supports the standard options of the ERT target, and
displays additional target-specific options in the Configuration Parameters
dialog box (see Target-Specific Options for my_ert_target on page 5-39).

5-38

Tutorial: Creating a Custom Target Configuration

Target-Specific Options for my_ert_target

my_ert_target supports a makefile-based build, generating code and
executables that run on the host system. my_ert_target uses the LCC
compiler under Windows. This compiler was chosen because it is readily
available and is distributed with Real-Time Workshop. If you use a different
compiler, you can set up LCC temporarily as your default compiler by typing
the MATLAB command

mex -setup

Follow the prompts and select LCC.

Note On UNIX systems, make sure that you have a C compiler installed. You
can then do this exercise, substituting appropriate UNIX directory syntax.

You can test my_ert_target with any model that is compatible with the ERT
target. (See the “Requirements and Restrictions for ERT-Based Simulink
Models” section of the Real-Time Workshop Embedded Coder documentation.)
Generated programs operate identically to ERT generated programs.

However, to simplify the testing of your target, we recommend testing with
targetmodel.mdl, a very simple fixed-step model (see “Create Test Model
and S-Function” on page 5-47). The S-Function block in targetmodel.mdl
uses the source code from the timestwo example, and generates fully inlined
code. See the Simulink Writing S-Functions document and the Real-Time
Workshop Target Language Compiler document for a complete discussion
of the timestwo example S-function.

5-39

5 System Target Files

Creating Target Directories
In this section, you create directories to store the target files and add them to
the MATLAB path, following the recommended conventions (see “Directory
and File Naming Conventions” on page 4-3). You also create a directory to
store the test model, S-function, and generated code.

This example assumes that your target and model directories are located
within the directory d:/work. Note that your target and model directories
should not be located anywhere in the MATLAB directory tree (that is, in
or under the matlabroot directory).

To create the necessary directories and make them accessible,

1 Create a target root directory, my_ert_target. To do this from the
MATLAB Command Window on Windows, enter:

cd d:/work
mkdir my_ert_target

2 Within the target root directory, create a subdirectory to store your target
files.

mkdir my_ert_target/my_ert_target

3 Add these directories to your MATLAB path.

addpath d:/work/my_ert_target
addpath d:/work/my_ert_target/my_ert_target

4 Create a directory, my_targetmodel, to store the test model, S-function,
and generated code.

mkdir my_targetModel

Create ERT-Based STF
In this section, you create an STF for your target by copying and modifying
the standard STF for the ERT target. Then you validate the STF by viewing
the new target in the System Target File Browser and the Configuration
Parameters dialog box.

5-40

Tutorial: Creating a Custom Target Configuration

Editing the STF
To edit the STF,

1 Change your working directory to you created in “Creating Target
Directories” on page 5-40.

cd d:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert.tlc in
d:/work/my_ert_target/my_ert_target and rename it to
my_ert_target.tlc. The file ert.tlc is the STF for the ERT target.

3 Open my_ert_target.tlc in a text editor of your choice.

4 Generally, the first step in customizing an STF is to replace the header
comment lines with directives that make your STF visible in the System
Target File Browser and define the associated TMF (that you create
shortly), make command, and external mode interface file (if any). See
“Header Comments” on page 5-7 for a detailed explanation of these
directives.

Replace the header comments in my_ert_target.tlc with the following
header comments.

%% SYSTLC: My ERT-based Target TMF: my_ert_target_lcc.tmf MAKE: make_rtw \

%% EXTMODE: no_ext_comm

5 The file my_ert_target.tlc inherits the standard ERT options, using
the mechanism described in “Inherited Target Options” on page 5-35.
Therefore, the existing rtwoptions structure definition is superfluous. Edit
the RTW_OPTIONS section such that it includes only the following code.

/%

BEGIN_RTW_OPTIONS

%--%

% Configure RTW code generation settings %

%--%

rtwgensettings.BuildDirSuffix = '_ert_rtw';

5-41

5 System Target Files

END_RTW_OPTIONS

%/

6 Delete the code after the end of the RTW_OPTIONS section, which is
delimited by the directives BEGIN_CONFIGSET_TARGET_COMPONENT and
END_CONFIGSET_TARGET_COMPONENT. This code is for MathWorks internal
development use only.

7 Modify the build directory suffix in the rtwgenSettings structure in
accordance with the conventions described in “rtwgensettings Structure”
on page 5-19.

To set the suffix to a string appropriate to the _my_ert_target custom
target, change the line

rtwgensettings.BuildDirSuffix = '_ert_rtw'

to

rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw'

8 Modify the rtwgenSettings structure to inherit options from the ERT
target and declare Release 14 or later compatibility as described in
“rtwgensettings Structure” on page 5-19. Add the following code to the
rtwgenSettings definition:

rtwgensettings.DerivedFrom = 'ert.tlc';
rtwgensettings.Version = '1';

9 Add an rtwoptions structure that defines a target-specific options category
with three check boxes just after the BEGIN_RTW_OPTIONS directive. The
following code shows the complete RTW_OPTIONS section, including the
rtwgenSettings changes made in previous steps.

/%

BEGIN_RTW_OPTIONS

rtwoptions(1).prompt = 'My Target Options';

rtwoptions(1).type = 'Category';

rtwoptions(1).enable = 'on';

rtwoptions(1).default = 3; % number of items under this category

% excluding this one.

5-42

Tutorial: Creating a Custom Target Configuration

rtwoptions(1).popupstrings = '';

rtwoptions(1).tlcvariable = '';

rtwoptions(1).tooltip = '';

rtwoptions(1).callback = '';

rtwoptions(1).makevariable = '';

rtwoptions(2).prompt = 'Demo option 1';

rtwoptions(2).type = 'Checkbox';

rtwoptions(2).default = 'off';

rtwoptions(2).tlcvariable = 'DummyOpt1';

rtwoptions(2).makevariable = '';

rtwoptions(2).tooltip = ['Demo option1 (non-functional)'];

rtwoptions(2).callback = '';

rtwoptions(3).prompt = 'Demo option 2';

rtwoptions(3).type = 'Checkbox';

rtwoptions(3).default = 'off';

rtwoptions(3).tlcvariable = 'DummyOpt2';

rtwoptions(3).makevariable = '';

rtwoptions(3).tooltip = ['Demo option2 (non-functional)'];

rtwoptions(3).callback = '';

rtwoptions(4).prompt = 'Demo option 3';

rtwoptions(4).type = 'Checkbox';

rtwoptions(4).default = 'off';

rtwoptions(4).tlcvariable = 'DummyOpt3';

rtwoptions(4).makevariable = '';

rtwoptions(4).tooltip = ['Demo option3 (non-functional)'];

rtwoptions(4).callback = '';

%--%

% Configure RTW code generation settings %

%--%

rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw';

rtwgensettings.DerivedFrom = 'ert.tlc';

rtwgensettings.Version = '1';

END_RTW_OPTIONS

%/

5-43

5 System Target Files

10 Save your changes to my_ert_target.tlc and close the file.

Viewing the STF
At this point, you can verify that the target inherits and displays ERT options
correctly as follows:

1 Create a new model.

2 Open the Configuration Parameters dialog box.

3 Select Real-Time Workshop.

4 Click Browse to open the System Target File Browser.

5 In the Browser, scroll through the list of targets to find the new target,
my_ert_target. (This step assumes that your MATLAB path contains
d:/work/my_ert_target/my_ert_target, as previously set in “Creating
Target Directories” on page 5-40.)

6 Select My ERT-based Target as shown below, and click OK.

5-44

Tutorial: Creating a Custom Target Configuration

7 The Real-Time Workshop pane now shows that the model is configured
for the my_ert_target target. The System target file, Make command,
and Template makefile fields should appear as follows:

8 Click My Target Options and observe that the target displays the three
check box options defined in the rtwoptions structure, as shown in the
following figure.

9 Click Real-Time Workshop and reopen the System Target File Browser.

5-45

5 System Target Files

10 Select the Real-Time Workshop Embedded Coder target (ert.tlc) and
observe that the target displays the standard ERT options.

11 Close the model. You do not need to save it.

At this point, the STF for the skeletal target is complete. Note, however, that
the STF header comments reference a TMF, my_ert_target_lcc.tmf. You
are not able to invoke the build process for your target until the TMF file is in
place. In the next section, you create my_ert_target_lcc.tmf.

Create ERT-Based TMF
In this section, you create a TMF for your target by copying and modifying the
standard ERT TMF for the LCC compiler:

1 Check that your working directory is still set to the target file directory you
created previously in “Creating Target Directories” on page 5-40.

d:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert_lcc.tmf in
d:/work/my_ert_target/my_ert_target and rename it to
my_ert_target_lcc.tmf. The file ert_lcc.tmf is the ERT
compiler-specific template makefile for the LCC compiler.

3 Open my_ert_target_lcc.tmf in a text editor of your choice.

4 Change the SYS_TARGET_FILE parameter so that the correct file reference
is generated in the make file. Change the line

SYS_TARGET_FILE = any

to

SYS_TARGET_FILE = my_ert_target.tlc

5 Save changes to my_ert_target_lcc.tmf and close the file.

Your target can now generate code and build a host-based executable. In
the next sections, you create a test model and test the build process using
my_ert_target.

5-46

Tutorial: Creating a Custom Target Configuration

Create Test Model and S-Function
In this section, you build a simple test model for later use in code generation:

1 Set your working directory to /work/my_targetModel.

cd d:/work/my_targetModel

For the remainder of this tutorial, my_targetModel is assumed to be the
working directory. Your target writes the output files of the code generation
process into a build directory within the working directory. When inlined
code is generated for the timestwo S-function, the build process looks for
the TLC implementation of the S-function in the working directory.

2 Copy the following C and TLC files for the timestwo S-function to your
working directory:

• matlabroot/simulink/src/timestwo.c

• matlabroot/toolbox/simulink/blocks/tlc_c/timestwo.tlc

3 Build the timestwo MEX-file in d:/work/my_targetmodel.

mex timestwo.c

4 Create the following model, using an S-Function block from the Simulink
User-Defined Functions library. Save the model in your working directory
as targetmodel.mdl.

5 Double-click the S-Function block to open the Block Parameters dialog box.
Enter the S-function name timestwo. Click OK. The block is now bound
to the timestwo MEX-file.

6 Open the Configuration Parameters dialog box and click Solver.

7 Set the solver Type to fixed-step and click Apply.

5-47

5 System Target Files

8 Save the model.

9 Open the scope and run a simulation. Verify that the timestwo S-function
multiplies its input by 2.0.

Keep the targetmodel model open for use in the next section, in which you
generate code using the test model.

Verify Target Operation
In this section you configure targetmodel for the my_ert_target custom
target, and use the target to generate code and build an executable:

1 Open the Configuration Parameters dialog box and select Real-Time
Workshop.

2 Click Browse to open the System Target File Browser.

3 In the Browser, select My ERT-based Target and click OK.

4 The Configuration Parameters dialog box now displays the Real-Time
Workshop pane for my_ert_target.

5 Select the Generate HTML report option.

6 Click Apply and save the model. The model is configured for
my_ert_target.

7 Click Build. If the build is successful, MATLAB displays the message
below.

Created executable: /targetmodel.exe

Successful completion of Real-Time Workshop build procedure for model:

targetmodel

Your working directory contains the targetmodel.exe file and the build
directory, targetmodel_mytarget_ert_rtw, which contains generated code
and other files. The working directory also contains an slproj directory,
used internally by the build process.

The code generator also creates and displays a code generation report.

5-48

Tutorial: Creating a Custom Target Configuration

8 To view the generated model code, activate the code generation report
window. In the Contents pane, click the targetmodel.c link.

9 In targetmodel.c, locate the model step function, targetmodel_step.
Observe the following code.

/* S-Function block: <Root>/S-function */
/* Multiply input by two */
targetmodel_B.S_Function = targetmodel_B.SineWave * 2.0;

This code verifies that the mytarget_ert_rtw target has generated a
correct inlined output computation for the S-Function block in the model.

5-49

5 System Target Files

5-50

6

Template Makefiles

Template Makefiles and Tokens
(p. 6-2)

Syntax of template makefile tokens;
the token expansion and makefile
generation process.

make Command (p. 6-8) How the build process invokes the
make utility.

Structure of the Template Makefile
(p. 6-9)

Overview of the sections of the
template makefile.

Customizing and Creating Template
Makefiles (p. 6-12)

Mechanics of setting up a template
makefile; using macros and
file-pattern-matching expressions
in a template makefile; using the
rtwmakecfg mechanism to generate
block-specific information in a
makefile; pointer to information on
how to support model referencing.

6 Template Makefiles

Template Makefiles and Tokens
To configure or customize a template makefile (TMF), you should be familiar
with how the make command works and how it processes makefiles. You
should also understand makefile build rules. For information of these topics,
refer to the documentation provided with the make utility you use. There are
also several good books on make utilities.

TMFs are made up of statements containing tokens. The Real-Time Workshop
build process expands tokens and creates a makefile, model.mk. TMFs are
designed to generate makefiles for specific compilers on specific platforms.
The generated model.mk file is tailored to compile and link code generated
from your model, using commands specific to your development system.

Creation of model.mk

Template Makefile Tokens
The make_rtw M-file command (or a different command provided with some
targets) directs the process of generating model.mk. The make_rtw command
processes the TMF specified on the General options section of the Real-Time
Workshop tab of the Configuration Parameters dialog box. make_rtw
copies the TMF, line by line, expanding each token encountered. Template
Makefile Tokens Expanded by make_rtw on page 6-3 lists the tokens and
their expansions.

These tokens are used in several ways by the expanded makefile:

• To control the conditional behavior in the makefile. The conditionals are
used to control the source file lists, library names, target to be built, and
other build-related information.

• To provide the appropriate macro definitions needed for the compilation of
the files, for example, -DINTEGER_CODE=1.

6-2

Template Makefiles and Tokens

Template Makefile Tokens Expanded by make_rtw

Token Expansion

|>ALT_MATLAB_BIN<| Alternate full pathname for
the MATLAB executable; value
is different than value for
MATLAB_BIN when the full
pathname contains spaces.

|>ALT_MATLAB_ROOT<| Alternate full pathname for the
MATLAB installation; value
is different than value for
MATLAB_ROOT when the full
pathname contains spaces.

|>BUILDARGS<| Options passed to make_rtw. This
token is provided so that the contents
of your model.mk file changes when
you change the build arguments,
thus forcing an update of all modules
when your build options change.

|>COMBINE_OUTPUT_UPDATE_FCNS<| True (1) when Single
output/update function is
selected, otherwise False (0).
Used for the macro definition
-DONESTEPFCN=1.

|>COMPUTER<| Computer type. See the MATLAB
computer command.

|>EXT_MODE<| True (1) to enable generation
of external mode support code,
otherwise False (0).

|>EXTMODE_TRANSPORT<| Index of transport mechanism (for
example, tcpip, serial) for external
mode.

|>EXTMODE_STATIC<| True (1) if static memory allocation
is selected for external mode. False
(0) if dynamic memory allocation is
selected.

6-3

6 Template Makefiles

Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion

|>EXTMODE_STATIC_SIZE<| Size of static memory allocation
buffer (if any) for external mode.

|>GENERATE_ERT_S_FUNCTION<| True (1) when Create Simulink
(S-Function) block is selected,
otherwise False (0). Used for control
of the makefile target of the build.

|>INCLUDE_MDL_TERMINATE_FCN<| True (1) when Terminate function
required is selected, otherwise
False (0). Used for the macro
definition -DTERMFCN==1.

|>INTEGER_CODE<| True (1) when Support
floating-point numbers is
not selected, otherwise False (0).
INTEGER_CODE is a required macro
definition when compiling the source
code and is used when selecting
precompiled libraries to link against.

|>MAKEFILE_NAME<| model.mk — The name of the
makefile that was created from the
TMF.

|>MAT_FILE<| True (1) when MAT-file logging
is selected, otherwise False (0).
MAT_FILE is a required macro
definition when compiling the source
code and also is used to include
logging code in the build process.

|>MATLAB_BIN<| Location of the MATLAB executable.

|>MATLAB_ROOT<| Path to where MATLAB is installed.

|>MEM_ALLOC<| Either RT_MALLOC or RT_STATIC.
Indicates how memory is to be
allocated.

6-4

Template Makefiles and Tokens

Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion

|>MEXEXT<| MEX-file extension. See the
MATLAB mexext command.

|>MODEL_MODULES<| Any additional generated source
modules. For example, you can split
a large model into two files, model.c
and model1.c. In this case, this
token expands to model1.c.

|>MODEL_MODULES_OBJ<| Object filenames (.obj)
corresponding to any additional
generated source modules.

|>MODEL_NAME<| Name of the Simulink block diagram
currently being built.

|>MULTITASKING<| True (1) if solver mode is
multitasking, otherwise False
(0).

|>NCSTATES<| Number of continuous states.

|>NUMST<| Number of sample times in the
model.

|>PORTABLE_WORDSIZES<| True (1) when Enable portable
word sizes is selected, otherwise
False (0).

|>RELEASE_VERSION<| The release version of MATLAB.

|>S_FUNCTIONS<| List of noninlined S-function sources.

|>S_FUNCTIONS_LIB<| List of S-function libraries available
for linking.

|>S_FUNCTIONS_OBJ<| Object (.obj) file list corresponding
to noninlined S-function sources.

|>SOLVER<| Solver source filename, for example,
ode3.c.

6-5

6 Template Makefiles

Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion

|>SOLVER_OBJ<| Solver object (.obj) filename, for
example, ode3.obj.

|>TARGET_LANG_EXT<| c when the Real-Time Workshop
Language selection is C, cpp when
the Language selection is C++.
Used in the makefile to control the
extension on generated source files.

|>TGT_FCN_LIB<| ANSI_C, ISO_C, or GNU, matching the
setting of the Target floating-point
math environment. TGT_FCN_LIB
specifies compiler command line
options. For example, if you set the
token to ISO_C, the compiler might
need an additional option set to
support C99 library functions.

|>TID01EQ<| True (1) if sampling rates of the
continuous task and the first discrete
task are equal, otherwise False (0).

These tokens are expanded by substitution of parameter values known to
the build process. For example, if the source model contains blocks with two
different sample times, the TMF statement

NUMST = |>NUMST<|

expands to the following in model.mk.

NUMST = 2

In addition to the above, make_rtw expands tokens from other sources:

• Target-specific tokens defined in the target options of the Configuration
Parameters dialog box

6-6

Template Makefiles and Tokens

• Structures in the rtwoptions section of the system target file. Any
structures in the rtwoptions structure array that contain the field
makevariable are expanded.

The following example is extracted from matlabroot/rtw/c/grt/grt.tlc.
The section starting with BEGIN_RTW_OPTIONS contains M-file code that sets
up rtwoptions. The following directive causes the |>EXT_MODE<| token to be
expanded to 1 (on) or 0 (off), depending on how you set the External mode
options.

rtwoptions(2).makevariable = 'EXT_MODE'

6-7

6 Template Makefiles

make Command
After creating model.mk from your TMF, Real-Time Workshop invokes a make
command. To invoke make, Real-Time Workshop issues this command.

makecommand -f model.mk

makecommand is defined by the MAKECMD macro in your target’s TMF (see
“Structure of the Template Makefile” on page 6-9). You can specify additional
options to make in the Make command field of the Real-Time Workshop
pane. (See the sections “Make Command” and “Template Makefiles and Make
Options” in the Real-Time Workshop documentation.)

For example, specifying OPT_OPTS=-O2 in the Make command field causes
make_rtw to generate the following make command.

makecommand -f model.mk OPT_OPTS=-O2

A comment at the top of the TMF specifies the available make command
options. If these options do not provide you with enough flexibility, you can
configure your own TMF.

Make Utilities
The make utility lets you control nearly every aspect of building your real-time
program. There are several different versions of make available. Real-Time
Workshop provides the Free Software Foundation’s GNU make for both UNIX
and PC platforms in platform-specific subdirectories under

matlabroot/rtw/bin

It is possible to use other versions of make with Real-Time Workshop, although
GNU Make is recommended. To ensure compatibility with Real-Time
Workshop, make sure that your version of make supports the following
command format.

makecommand -f model.mk

6-8

Structure of the Template Makefile

Structure of the Template Makefile
A TMF has four sections:

• The first section contains initial comments that describe what this makefile
targets.

• The second section defines macros that tell make_rtw how to process the
TMF. The macros are

- MAKECMD — This is the command used to invoke the make utility. For
example, if MAKECMD = mymake, then the make command invoked is

mymake -f model.mk

- HOST — The target platform for this TMF is targeted for. This can be
HOST=PC, UNIX, computer_name (see the MATLAB computer command),
or ANY.

- BUILD — This tells make_rtw whether or not it should invoke make from
the Real-Time Workshop build procedure. Specify BUILD=yes or no.

- SYS_TARGET_FILE — Name of the system target file or the value all.
This is used for consistency checking by make_rtw to verify that the
correct system target file was specified in the Target selection panel of
the Real-Time Workshop pane of the Configuration Parameters dialog
box. If you specify all, you can use the TMF with any system target file.

- BUILD_SUCCESS — An optional macro that specifies the build success
string to be displayed on successful make completion on the PC. For
example,

BUILD_SUCCESS = ### Successful creation of

The BUILD_SUCCESS macro, if used, replaces the standard build success
string found in the TMFs distributed with the bundled Real-Time
Workshop targets (such as GRT):

@echo ### Created executable $(MODEL).exe

Your TMF must include either the standard build success string, or use
the BUILD_SUCCESS macro. For an example of the use of BUILD_SUCCESS,
see

matlabroot/toolbox/rtw/c/grt/grt_bc.tmf

6-9

6 Template Makefiles

- BUILD_ERROR — An optional macro that specifies the build error message
to be displayed when an error is encountered during the make procedure.
For example,

BUILD_ERROR = ['Error while building ', modelName]

- VERBOSE_BUILD_OFF_TREATMENT = PRINT_OUTPUT_ALWAYS — add this
command if you want the makefile output to be displayed always
(regardless of the setting of the Verbose build option in the Real-Time
Workshop Debugging pane).

The following DOWNLOAD options apply only to the Tornado target:

- DOWNLOAD — An optional macro that you can specify as yes or no. If
specified as yes (and BUILD=yes), then make is invoked a second time
with the download target.

make -f model.mk download

- DOWNLOAD_SUCCESS — An optional macro that you can use to specify
the download success string to be used when looking for a successful
download. For example,

DOWNLOAD_SUCCESS = ### Downloaded

- DOWNLOAD_ERROR — An optional macro that you can use to specify the
download error message to be displayed when an error is encountered
during the download. For example,

DOWNLOAD_ERROR = ['Error while downloading ', modelName]

• The third section defines the tokens make_rtw expands (see Template
Makefile Tokens Expanded by make_rtw on page 6-3).

• The fourth section contains the make rules used in building an executable
from the generated source code. The build rules are typically specific to
your version of make.

6-10

Structure of the Template Makefile

The next figure shows the general structure of a Template Make File.

8� ��	!�&�:<�*����&	�
8
8 /����!�	!�&����	��#�	�	'����&��9���!�&���������������!��
8 	�!��	���
�	�������!
��!��!&	�&����
8 "
������ ��&	���&'���	!�&�
�� !
����# ��&	��
8 ��	!�&�;<�.������������'�������	�
8
8 ������

��!&#������������������'�	���=��
>�!���?��������� !
�������� ��<
8
8 ."5+*./ ��!��!��	��������&�� ����	��!&9����	�������� 	!
!	'�
8 @%� A
�	�����	�!��	���
�	�������!
��!�����!#&������
8 �!�����A*����0�7B$
8 607-/ 7&9��������������	���=��
>�!���?��������� !
�������� ��
8 �'��C&�$D
8 E��"=4+���7-+ ���������'�	���	��#�	��!
��

."5+*./���������F�����
@%� F 0�7B
607-/ F '��
E��"=4+���7-+ F �'�	���	
�
8 ��	!�&�G<�����&���H��&�����'�������	�
8

.%/+- F I2.%/+-��".+3I

.%/0-+ F I2.%/+-�.%/0-+3I

."5+�7-+ F I2."5+�7-+��".+3I

."�-"6�=%%� F I2."�-"6�=%%�3I
���
%.A0�+= F I2%.A0�+=3I
607-/"=4 F I2607-/"=43I

8 ��	!�&�J<�6 !
���
��
8
8 ����� !
���
�����������!�!��	��'� ��	��#�	��&��9���!�&���������

��������

������
������	�

�����
������	�

�����	�����

6-11

6 Template Makefiles

Customizing and Creating Template Makefiles
• “Introduction” on page 6-12

• “Setting Up a Template Makefile” on page 6-12

• “Using Macros and Pattern Matching Expressions in a Template Makefile”
on page 6-15

• “Using rtwmakecfg Files to Customize the Makefile” on page 6-17

• “Supporting Continuous Time in Custom Targets” on page 6-20

• “Model Reference Considerations” on page 6-21

• “Generating Make Commands for Nondefault Compilers” on page 6-21

Introduction
This section describes the mechanics of setting up a custom TMF and
incorporating it into the build process. It also discusses techniques for
modifying a TMF and M-file mechanisms associated with the TMF.

Before creating a custom TMF, you should read Chapter 4, “Target Directories,
Paths, and Files” to understand the directory structure and MATLAB path
requirements for custom targets.

Setting Up a Template Makefile
To customize or create a new TMF, you should copy an existing GRT or ERT
TMF from one of the following locations:

matlabroot/rtw/c/grt
matlabroot/rtw/c/ert

Place the copy in the same directory as the associated system target file
(STF). Usually, this is the mytarget/mytarget directory within the target
directory structure. Then, rename your TMF appropriately (for example,
mytarget.tmf) and modify it.

To ensure that the build process locates and selects your TMF correctly, you
must provide information in the STF file header (see “System Target File
Structure” on page 5-4). For a target that implements a single TMF, the

6-12

Customizing and Creating Template Makefiles

standard way to specify the TMF to be used in the build process is to use the
TMF directive of the STF file header.

TMF: mytarget.tmf

If your target must support multiple development environments, you can
specify an M-file script that selects the correct TMF, based on user preferences
(see Chapter 8, “Using Target Preferences”). To do this, you must

• Create the M-file script in your mytarget/mytarget directory. The naming
convention for this file is mytarget_default_tmf.m.

• Specify this M-file in the TMF directive of the STF file header.

TMF: mytarget_default_tmf

The build process then invokes your mytarget_default_tmf.m file,
which then selects the correct TMF, based on target preference settings.
“mytarget_default_tmf.m Example Code” on page 6-13 illustrates this
technique.

Another useful technique is to store a path to the user’s installed development
environment in your target preferences. You can then locate the template
makefiles under the appropriate tool directory. This allows several tool-specific
template makefiles files to be located under the specific tool directory.

mytarget_default_tmf.m Example Code
The code example below implements an M function, mytarget_default_tmf.
The function loads target preferences into a structure from preferences data
stored on disk. The code verifies that the target preferences information is
consistent with the STF name, and extracts the associated TMF name. The
TMF name is returned as the string tmf.

function [tmf,envVal] = mytarget_default_tmf

try

prefs = RTW.TargetPrefs.load('mytarget.prefs','structure');

catch

error(lasterr);

end

% Get the desired MYTARGET implementation and ensure it is supported

6-13

6 Template Makefiles

if ~isfield(prefs, 'Implementation')

error('MYTARGET preferences not set correctly, update Target Preferences.');

end

imp = deblank(lower(prefs.Implementation));

stfname = deblank(lower(get_param(bdroot, 'RTWSystemTargetFile')));

if ~strncmp(imp, stfname, length(stfname) - length('.tlc'))

msg = ['System Target filename: ', stfname,

' does not match Implementation specified in Target Preferences: ', imp];

error(msg);

end

6-14

Customizing and Creating Template Makefiles

% Return the desired template make file.

tmf = [imp, '.tmf'];

% This argument is unused

envVal = '';

Using Macros and Pattern Matching Expressions in a
Template Makefile
This section shows, through an example, how to use macros and
file-pattern-matching expressions in a TMF to generate commands in the
model.mk file.

The make utility processes the model.mk makefile and generates a set of
commands based upon dependency rules defined in model.mk. After make
generates the set of commands needed to build or rebuild test, make executes
them.

For example, to build a program called test, make must link the object files.
However, if the object files don’t exist or are out of date, make must compile
the source code. Thus there is a dependency between source and object files.

Each version of make differs slightly in its features and how rules are defined.
For example, consider a program called test that gets created from two
sources, file1.c and file2.c. Using most versions of make, the dependency
rules would be

test: file1.o file2.o
cc -o test file1.o file2.o

file1.o: file1.c
cc -c file1.c

file2.o: file2.c
cc -c file2.c

6-15

6 Template Makefiles

In this example, a UNIX environment is assumed. In a PC environment the
file extensions and compile and link commands are different.

In processing the first rule

test: file1.o file2.o

make sees that to build test, it needs to build file1.o and file2.o. To build
file1.o, make processes the rule

file1.o: file1.c

If file1.o doesn’t exist, or if file1.o is older than file1.c, make compiles
file1.c.

The format of Real-Time Workshop TMFs follows the above example.
Our TMFs use additional features of make such as macros and
file-pattern-matching expressions. In most versions of make, a macro is
defined with

MACRO_NAME = value

References to macros are made with $(MACRO_NAME). When make sees this
form of expression, it substitutes value for $(MACRO_NAME).

You can use pattern matching expressions to make the dependency rules more
general. For example, using GNU Make, you could replace the two “file1.o:
file1.c” and “file2.o: file2.c” rules with the single rule

%.o : %.c
cc -c $<

6-16

Customizing and Creating Template Makefiles

Note that $< in the previous example is a special macro that equates to the
dependency file (that is, file1.c or file2.c). Thus, using macros and the "%"
pattern matching character, the previous example can be reduced to

SRCS = file1.c file2.c
OBJS = $(SRCS:.c=.o)

test: $(OBJS)
cc -o $@ $(OBJS)

%.o : %.c
cc -c $<

Note that the $@ macro above is another special macro that equates to the
name of the current dependency target, in this case test.

This example generates the list of objects (OBJS) from the list of sources (SRCS)
by using the string substitution feature for macro expansion. It replaces
the source file extension (for example, .c) with the object file extension (.o).
This example also generalized the build rule for the program, test, to use
the special "$@" macro.

Using rtwmakecfg Files to Customize the Makefile
Real-Time Workshop TMFs provide rules and macros that let you add source
directories, include directories, and run-time library names and module
objects to generated makefiles.

The rtwmakecfg mechanism lets inlined S-functions add information to the
makefile. This feature is useful if you need to include your code when building
inlined S-functions, such as device driver blocks. To add information needed
for an S-function to the makefile, you must

• Create an M-function, rtwmakecfg, in a file rtwmakecfg.m. This file
is associated with your S-function by its directory location. “Creating
the rtwmakecfg.m File” on page 6-18 describes the requirements for the
rtwmakecfg function and the data it should return.

• Modify your target’s TMF to support macro expansion for the information
returned by the rtwmakecfg function. “Modifying the TMF” on page 6-18
describes the modifications needed.

6-17

6 Template Makefiles

Creating the rtwmakecfg.m File
The rtwmakecfg.m file must reside in the same directory as your S-function
component (a MEX-file with a platform-dependent extension, such as .mexw32
on 32-bit Windows). The rtwmakecfg function is called during the build
process. After the TLC phase of the build, when generating a makefile from
the TMF, the build process searches for an rtwmakecfg.m file in the directory
containing the S-function component. If an rtwmakecfg.m file is found, the
function is called.

The rtwmakecfg function must return a structured array with following
elements:

• makeInfo.includePath: A cell array containing additional include
directory names, which must be organized as row vector. These directory
names are expanded into include instructions in the generated makefile.

• makeInfo.sourcePath: A cell array containing additional source directory
names, which must be organized as a row vector. These directory names
are expanded into make rules in the generated makefile.

• makeInfo.library: A structure containing additional runtime library
names and module objects, which must be organized as a row vector. This
information is expanded into make rules in the generated makefile.

- makeInfo.library(n).Name: String. Specifies the name of the library
(without extension).

- makeInfo.library(n).Location: String. Directory in which the library
is located.

- makeInfo.library(n).Modules: Cell array. Specifies the C files in the
library.

Modifying the TMF
You must modify the Include Path, Additional Libraries, and Rules
sections of your target’s TMF to expand the information generated by the
rtwmakecfg function. Code excerpts are shown below. These examples
may not be appropriate for your particular make utility. You can find other
examples for numerous make environments in the ERT TMFs. The ERT
TMFs are located in matlabroot/rtw/c/ert/*.tmf.

6-18

Customizing and Creating Template Makefiles

The following example adds directory names to the include path.

ADD_INCLUDES = \
|>START_EXPAND_INCLUDES<| -I|>EXPAND_DIR_NAME<| \
|>END_EXPAND_INCLUDES<|

The ADD_INCLUDES macro must be present in the INCLUDES line, as in

INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(ADD_INCLUDES) $(USER_INCLUDES)

The purpose of the following code example is to add library names to the
makefile.

LIBS =

|>START_PRECOMP_LIBRARIES<|

LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_PRECOMP_LIBRARIES<|

|>START_EXPAND_LIBRARIES<|

LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_EXPAND_LIBRARIES<|

The purpose of the following code example is to add rules to the makefile:

:|>START_EXPAND_RULES<|

$(BLD)/%.o: |>EXPAND_DIR_NAME<|/%.c $(SRC)/$(MAKEFILE) rtw_proj.tmw

@$(BLANK)

@echo ### "|>EXPAND_DIR_NAME<|\$*.c"

$(CC) $(CFLAGS) $(APP_CFLAGS) -o (BLD)(DIRCHAR)$*.o

|>EXPAND_DIR_NAME<|$(DIRCHAR)$*.c > (BLD)(DIRCHAR)$*.lst

|>END_EXPAND_RULES<|

|>START_EXPAND_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \

|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \

|>END_EXPAND_MODULES<|

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

@$(BLANK)

@echo ### Creating $@

$(AR) -r $@

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

|>END_EXPAND_LIBRARIES<|

6-19

6 Template Makefiles

|>START_PRECOMP_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \

|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \

|>END_EXPAND_MODULES<|

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

@$(BLANK)

@echo ### Creating $@

$(AR) -r $@

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

|>END_PRECOMP_LIBRARIES<|

Supporting Continuous Time in Custom Targets
If you want your custom ERT-based target to support continuous time, you
must update your template makefile (TMF) and the static main program
module (for example, mytarget_main.c) for your target.

Template Makefile Modifications
Add the NCSTATES token expansion after the NUMST token expansion, as
follows:

NUMST = |>NUMST<|
NCSTATES = |>NCSTATES<|

In addition, add NCSTATES to the CPP_REQ_DEFINES macro, as in the following
example:

CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DNUMST=$(NUMST) -DNCSTATES=$(NCSTATES) \

-DMAT_FILE=$(MAT_FILE)

-DINTEGER_CODE=$(INTEGER_CODE) \

-DONESTEPFCN=$(ONESTEPFCN) -DTERMFCN=$(TERMFCN) \

-DHAVESTDIO

-DMULTI_INSTANCE_CODE=$(MULTI_INSTANCE_CODE) \

-DADD_MDL_NAME_TO_GLOBALS=$(ADD_MDL_NAME_TO_GLOBALS)

6-20

Customizing and Creating Template Makefiles

Modifications to Main Program Module
The main program module defines a static main function that manages task
scheduling for all supported tasking modes of single- and multiple-rate
models. NUMST (the number of sample times in the model) determines whether
the main function calls multirate or single-rate code. However, when a model
uses continuous time, it is incorrect to rely on NUMST directly.

When the model has continuous time and the flag TID01EQ is true, both
continuous time and the fastest discrete time are treated as one rate in
generated code. The code associated with the fastest discrete rate is guarded
by a major time step check. When the model has only two rates, and TID01EQ
is true, the generated code has a single-rate call interface.

To support models that have continuous time, update the static main module
to take TID01EQ into account, as follows:

1 Before NUMST is referenced in the file, add the following code:

#if defined(TID01EQ) && TID01EQ == 1 && NCSTATES == 0
#define DISC_NUMST (NUMST - 1)
#else
#define DISC_NUMST NUMST
#endif

2 Replace all instances of NUMST in the file by DISC_NUMST.

Model Reference Considerations
See Chapter 7, “Supporting Model Referencing” for important information on
TMF modifications you may need to make to support the Real-Time Workshop
model referencing features.

Generating Make Commands for Nondefault
Compilers
Custom targets may need a target-specific hook file to generate an
appropriate make command when a nondefault compiler is used. This
file can be used to override the default Real-Time Workshop behavior for
selecting the appropriate compiler tool to be used in the build process. See
“STF_wrap_make_cmd_hook.m” on page 4-14 for further details.

6-21

6 Template Makefiles

6-22

7

Supporting Model
Referencing

Overview (p. 7-2) General requirements and issues for
model reference compatibility.

System Target File Modifications
(p. 7-3)

Required system target file
modifications for model reference
compatibility.

Template Makefile Modifications
(p. 7-4)

Required template makefile
modifications for model reference
compatibility.

Hook File Modifications (p. 7-8) How to support compilation of code
generated in the shared utilities
directory (required for model
referencing support).

Supporting the Shared Utilities
Directory (p. 7-9)

How to support compilation of
code generated in the shared
utilities directory required for model
referencing support.

7 Supporting Model Referencing

Overview
This chapter describes how to adapt your custom target for code generation
compatibility with the model reference features. Most of the guidelines below
concern required modifications to your system target file (STF) and template
makefile (TMF).

Note the following general requirements and issues for model reference
compatibility:

• A model reference compatible target must be derived from the ERT or
GRT targets.

• Your target must declare model reference compatibility, as described in
“System Target File Modifications” on page 7-3.

• Your TMF must define a number of makefile tokens, variables and rules
specifically for model referencing support, as described in “Template
Makefile Modifications” on page 7-4.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in “Hook File Modifications” on page
7-8.

• When generating code from a model that references another model, both
the top-level model and the referenced models must be configured for the
same code generation target.

• Note that the External mode option is not supported in model reference
Real-Time Workshop target builds. If the user has selected this option, it
is ignored during code generation.

7-2

System Target File Modifications

System Target File Modifications
Your target must declare model reference compatibility by setting the
ModelReferenceCompliant flag.

To do this, your STF must implement a SelectCallback function (see “Using
rtwoptions Callbacks in Release 14 or Later” on page 5-22). This callback is
invoked whenever the user selects a target in the System Target File browser.
Your SelectCallback function must set the ModelReferenceCompliant flag.

The callback is executed if the function is installed in the SelectCallback
field of the rtwgensettings structure in your STF. The following code installs
the SelectCallback function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

Your callback should set the ModelReferenceCompliant flag as follows.

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant', 'on');

slConfigUISetEnabled(hDlg, hSrc, 'ModelReferenceCompliant', false);

7-3

7 Supporting Model Referencing

Template Makefile Modifications
In addition to the TMF modifications described in this section, you must
modify your TMF variables and rules as described in “Hook File Modifications”
on page 7-8.

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

MODELREFS = |>MODELREFS<|

MODELLIB = |>MODELLIB<|

MODELREF_LINK_LIBS = |>MODELREF_LINK_LIBS<|

MODELREF_LINK_RSPFILE = |>MODELREF_LINK_RSPFILE_NAME<|

MODELREF_INC_PATH = |>START_MDLREFINC_EXPAND_INCLUDES<|\

-I|>MODELREF_INC_PATH<| |>END_MDLREFINC_EXPAND_INCLUDES<|

RELATIVE_PATH_TO_ANCHOR = |>RELATIVE_PATH_TO_ANCHOR<|

MODELREF_TARGET_TYPE = |>MODELREF_TARGET_TYPE<|

The following code excerpt shows how makefile tokens are expanded for
a referenced model.

MODELREFS =

MODELLIB = engine3200cc_rtwlib.a

MODELREF_LINK_LIBS =

MODELREF_LINK_RSPFILE =

MODELREF_INC_PATH =

RELATIVE_PATH_TO_ANCHOR = ../../..

MODELREF_TARGET_TYPE = RTW

The following code excerpt shows how makefile tokens are expanded for the
top-level model that references the referenced model.

MODELREFS = engine3200cc transmission

MODELLIB = archlib.a

MODELREF_LINK_LIBS = engine3200cc_rtwlib.a transmission_rtwlib.a

MODELREF_LINK_RSPFILE =

MODELREF_INC_PATH = -I../slprj/ert/engine3200cc -I../slprj/ert/transmission

RELATIVE_PATH_TO_ANCHOR = ..

MODELREF_TARGET_TYPE = NONE

7-4

Template Makefile Modifications

The MODELREFS token for the top-level model expands to a list of referenced
model names.

The MODELLIB token expands to the name of the library generated for the
model.

The MODELREF_LINK_LIBS token for the top-level model expands to a list of
referenced model libraries that the top-level model links against.

The MODELREF_LINK_RSPFILE token for the top-level model expands to the
name of a response file that the top-level model links against. This token is
valid only for build environments that support linker response files. For an
example of its use, see matlabroot/rtw/c/grt/grt_vc.tmf.

The MODELREF_INC_PATH token for the top-level model expands to the
include path to the referenced models.

The RELATIVE_PATH_TO_ANCHOR token expands to the relative path, from
the location of the generated makefile, to the MATLAB working directory
(pwd).

The MODELREF_TARGET_TYPE token signifies the type of target being built.
Possible values are

• NONE: Standalone model or top-level model referencing other model(s).

• RTW: Model reference Real-Time Workshop target build.

• SIM: Model reference simulation target build.

2 Add RELATIVE_PATH_TO_ANCHOR and MODELREF_INC_PATH include paths to
the overall INCLUDES variable.

INCLUDES = -I. -I$(RELATIVE_PATH_TO_ANCHOR) $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

$(USER_INCLUDES) $(MODELREF_INC_PATH)

3 Change the SRCS variable in your TMF so that it initially lists only common
modules. Additional modules are then appended conditionally, as described
in the next step. For example, change

SRCS = $(MODEL).c $(MODULES) ert_main.c $(ADD_SRCS) $(EXT_SRC)

to

7-5

7 Supporting Model Referencing

SRCS = $(MODULES) $(S_FUNCTIONS)

4 Create variables to define the final target of the makefile. You can remove
any variables that may have existed for defining the final target. For
example, remove

PROGRAM = ../$(MODEL)

and replace it with

ifeq ($(MODELREF_TARGET_TYPE), NONE)

Top-level model for RTW

PRODUCT = $(RELATIVE_PATH_TO_ANCHOR)/$(MODEL)

BIN_SETTING = $(LD) $(LDFLAGS) -o $(PRODUCT) $(SYSLIBS)

BUILD_PRODUCT_TYPE = "executable"

ERT based targets

SRCS += $(MODEL).c ert_main.c $(EXT_SRC)

GRT based targets

SRCS += $(MODEL).c grt_main.c rt_sim.c $(EXT_SRC) $(SOLVER)

else

sub-model for RTW

PRODUCT = $(MODELLIB)

BUILD_PRODUCT_TYPE = "library"

endif

5 Create rules for final target of makefile (replace any existing final target
rule). For example:

ifeq ($(MODELREF_TARGET_TYPE),NONE)

Top-level model for RTW

$(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS) $(MODELREF_LINK_LIBS)

$(BIN_SETTING) $(LINK_OBJS) $(MODELREF_LINK_LIBS)

$(SHARED_LIB) $(LIBS)

@echo "### Created $(BUILD_PRODUCT_TYPE): $@"

else

sub-model for RTW

$(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS)

@rm -f $(MODELLIB)

ar ruvs $(MODELLIB) $(LINK_OBJS)

@echo "### Created $(MODELLIB)"

7-6

Template Makefile Modifications

@echo "### Created $(BUILD_PRODUCT_TYPE): $@"

endif

6 Create a rule to allow submodels to compile files that reside in the
MATLAB working directory (pwd).

%.o : $(RELATIVE_PATH_TO_ANCHOR)/%.c
$(CC) -c $(CFLAGS) $<

7-7

7 Supporting Model Referencing

Hook File Modifications
Optional hook files let you customize the build process and communicate
information between various phases of the process. The hook files can
be M-files and TLC files that are invoked at well-defined stages of the
build process. If you are adapting your custom target for code generation
compatibility with model reference features, consider adding checks to your
hook files for handling referenced models differently than top models to
prevent resource conflicts.

For example, consider adding the following check to your
STF_make_rtw_hook.m file:

% Check if this is a referenced model

mdlRefTargetType = get_param(codeGenModelName,`ModelReferenceTargetType');

isNotModelRefTarget = strcmp(mdlRefTargetType, `NONE'); % NONE, SIM, or RTW

if isNotModelRefTarget

% code that is specific to the top-level model

else

% code that is specific to the referenced model

end

You may need to do a similar check in your TLC code.

%if !IsModelReferenceTarget()
%% code that is specific to the top-level model

%else
%% code that is specific to the referenced model

7-8

Supporting the Shared Utilities Directory

Supporting the Shared Utilities Directory
The shared utilities directory (slprj/target/_sharedutils) typically stores
generated utility code that is common between a top-level model and the
models it references. You can also force the build process to use a shared
utilities directory for a standalone model. See “Project Directory Structure
for Model Reference Targets” in the Real-Time Workshop documentation for
details.

If you want your target to support compilation of code generated in the shared
utilities directory, several updates to your template makefile (TMF) are
required. Note that support for the shared utilities directory is a necessary,
but not sufficient, condition for supporting Model Reference builds. See the
preceding sections of this chapter to learn about additional updates that are
needed for supporting Model Reference builds.

The exact syntax of the changes can vary due to differences in the make
utility and compiler/archiver tools used by your target. The examples below
are based on the GNU make utility. You can find the following updated TMF
examples for GNU and Microsoft Visual C make utilities in the GRT and
ERT target directories:

• GRT: matlabroot/rtw/c/grt/

- grt_lcc.tmf

- grt_vc.tmf

- grt_unix.tmf

• ERT: matlabroot/rtw/c/ert/

- ert_lcc.tmf

- ert_vc.tmf

- ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.

7-9

7 Supporting Model Referencing

Note The ERT-based TMFs contain extra code to handle generation of ERT
S-functions and Model Reference simulation targets. Your target does not
need to handle these cases.

Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC = |>SHARED_SRC<|
SHARED_SRC_DIR = |>SHARED_SRC_DIR<|
SHARED_BIN_DIR = |>SHARED_BIN_DIR<|
SHARED_LIB = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities directory location and the source
files in it. A typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as
in the following expansion.

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the source
files. In the current release, all TMFs use the same path, as in the following
expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils
SHARED_BIN_DIR = ../slprj/ert/_sharedutils

7-10

Supporting the Shared Utilities Directory

2 Set the SHARED_INCLUDES variable according to whether shared utilities
are in use. Then append it to the overall INCLUDES variable.

SHARED_INCLUDES =
ifneq ($(SHARED_SRC_DIR),)
SHARED_INCLUDES = -I$(SHARED_SRC_DIR)
endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \
$(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o : $(SHARED_SRC_DIR)/%.c
$(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

7 Provide a rule to create a library of the shared utilities. The following
example is based on UNIX.

$(SHARED_LIB) : $(SHARED_OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created $@ "

7-11

7 Supporting Model Referencing

Note Depending on your make utility, you may be able to combine Steps 6
and 7 into one rule. For example, gmake (used with ert_unix.tmf) uses:

$(SHARED_LIB) : $(SHARED_SRC)

@echo "### Creating $@ "

cd $(SHARED_BIN_DIR); $(CC) -c $(CFLAGS) $(GCC_WALL_FLAG_MAX) $(notdir $?)

ar ruvs $@ $(SHARED_OBJS)

@echo "### $@ Created "

See this and other examples in the files ert_vc.tmf, ert_lcc.tmf, and
ert_unix.tmf located at matlabroot/rtw/c/ert.

8 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)
$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS)

$(SHARED_LIB) $(SYSLIBS)
@echo "### Created executable: $(MODEL)"

9 Remove any explicit reference to rt_nonfinite.c from your TMF. For
example, change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

Note If your target interfaces to a development environment that is not
makefile based, you must make equivalent changes to provide the needed
information to your target compilation environment.

7-12

8

Using Target Preferences

Introduction to Target Preferences
(p. 8-2)

What to read first; overview of the
target preferences feature.

Creating Your Target Preferences
Class (p. 8-4)

How to define your target preferences
class using the Simulink Data Class
Designer.

Target Preferences Class Methods
(p. 8-8)

Summary of methods inherited by
target preferences classes.

Making Target Preferences Available
to the End User (p. 8-10)

Giving your users access to
user-settable target preference
properties.

Using Target Preferences in the
Build Process (p. 8-12)

How to access and use target
preferences data from TLC and from
MATLAB.

8 Using Target Preferences

Introduction to Target Preferences
The target preferences mechanism discussed in this section is based on
Simulink data classes and data objects. This document assumes that you are
familiar with Simulink data classes, packages, and objects, and with the use
of the Simulink Data Class Designer.

If you are not familiar with these topics, read the “Working with Data Objects”
section of the Simulink documentation.

Target Preferences Classes, Objects, and Properties
Target developers have found that it is often desirable to associate certain
types of data with the target. For example, an embedded target may offer
users a choice of several supported development systems (cross-compilers,
debuggers, and so on). To invoke the correct development tool during the build
process, the target needs information such as the user’s choice of development
tool, and the location on the host system where the user has installed the
compiler and debugger executables. Other data associated with a target might
specify host/target communications parameters, such as the communications
port and baud rate to be used.

Target developers need a mechanism to define and store the properties they
want to associate with their target. End users need a simple mechanism to
set target property values. The target preferences feature meets these needs.
Target preferences let you

• Structure the data associated with your target.

• Store data associated with your target persistently, across multiple models
and across multiple MATLAB sessions.

• Provide end users with a simple GUI for changing, saving and loading
their preferences. The target preferences feature also lets users perform
the same functions from the MATLAB command line, or in M-files, with
a simple set of commands.

To structure the data associated with your target, you define a target
preferences class by specifying target properties and property types. The
Simulink Data Class Designer simplifies this task.

8-2

Introduction to Target Preferences

Your target preferences class inherits methods from a base class
(RTW.TargetPrefs) provided by Real-Time Workshop Embedded Coder.
Inherited methods let you do the following with minimal effort:

• Manage persistent storage of preference data. The target preferences class
stores such information to a MAT-file that can be easily retrieved, edited,
and stored once again.

• Present a Property Inspector window to the end user, allowing for easy
editing of preference property values.

You can also access target preferences through M-file utilities (for an example,
see “Using Target Preferences in the Build Process” on page 8-12). You can
use target preferences data during the build process by invoking such utilities
from your TLC code. You can use the preference information in makefiles to
invoke the user’s preferred compiler or perform other target-specific tasks.

8-3

8 Using Target Preferences

Creating Your Target Preferences Class
This section demonstrates the creation of a simple target preferences class
using the Simulink Data Class Designer, and summarizes the methods
inherited by this class.

This example assumes the skeletal target directory structure (as described
in “Target Directory Structure and MATLAB Path” on page 4-4) has been
created for an embedded target called z80.

The following naming convention is recommended for target preferences
classes and packages:

• The package name should be in the form

targetname

where targetname is the name of the target.

• The recommended class name is prefs.

Thus the recommended package.class naming convention is

targetname.prefs

In this example, you define target preferences for a hypothetical embedded
target for the Z80 microprocessor. The example defines a containing package
z80, and a class prefs. The prefs class is a subclass of the RTW.TargetPrefs
base class. The z80 package is stored in the directory z80\z80\@z80.

1 Set your working directory to a directory that is not located anywhere in
the MATLAB directory tree (that is, in or under the matlabroot directory).
By the convention described in “Target Directory Structure and MATLAB
Path” on page 4-4, enter

cd z80\z80

2 Open the Simulink Data Class Designer by typing the following command
at the MATLAB prompt.

sldataclassdesigner('Create', 'ShowRTWTargetPrefs')

8-4

Creating Your Target Preferences Class

3 To define the package, click the New button next to the Package name
field of the Data Class Designer. Enter the package name, z80.

4 Click OK to create the new package in memory.

5 In the package Parent directory field, enter the path of the directory
where you want Simulink to create the new package (for example,
D:\work\z80\z80).

Note that Simulink creates the specified directory, if it does not already
exist, when you save the package to your file system.

6 To define the target preferences class, click the New button on the Classes
pane of the Data Class Designer dialog box. Enter the name of the new
class, prefs, in the Class name field on the Classes pane.

7 Click OK to create the new class in memory.

8-5

8 Using Target Preferences

8 Select RTW.TargetPrefs as the parent class for the new class. To do this,
first select the package name RTW from the left Derived from list box.
Then, select the class name TargetPrefs from the right Derived from
list box.

Note that the list of properties in the Properties of this class field is
empty. This is because the RTW.TargetPrefs parent class provides only
methods, not properties.

9 Populate the list of properties by entering several property names and
assigning data types and factory (default) values to them. (See “Defining
Class Properties” in the Simulink documentation.) The figure below shows
the Properties of this class field with two sample properties defined.

8-6

Creating Your Target Preferences Class

10 Click Confirm changes. Simulink displays the Confirm changes pane
(not shown).

11 Select the package containing the new class definition and click Write
Selected to save the new class definition.

The directory z80\z80 now contains the package subdirectory,\@z80. The
package subdirectory contains the class subdirectory, @prefs.

8-7

8 Using Target Preferences

Target Preferences Class Methods
This section describes the methods that your target preferences class inherits
from RTW.TargetPrefs.

To invoke these methods, instantiate an object of your target preferences
class and use the syntax

method(objectname)

Note that to instantiate the target preferences object, you must use a static
method, load, of the parent class RTW.TargetPrefs. For example:

z = RTW.TargetPrefs.load('z80.prefs');
disp(z)

CompilerName: 'AZ80CrossCompiler'
CompilerPath: 'D:\Applications\AZ80CrossCompiler\bin'

The inherited methods are summarized in this table.

Inherited Target Preferences Class Methods

Method Description

disp Display the current property values of an object of the target
preferences class in the MATLAB Command Window.

reset Reset the current property values of an object of the target
preferences class to the default (factory) values.

getclassname Return the name of the class as a string.

gui Using an existing object of the target preferences class, load
the current property values in memory, and display a Target
Preferences Setup window. Target Preferences Setup Window
on page 8-10 shows an example of such a window.

8-8

Target Preferences Class Methods

Inherited Target Preferences Class Methods (Continued)

Method Description

load('package.class'[,
'structure]')

load is a static method of the parent class. Load the stored
property values into an object of the package and class specified
by the first argument. If the second argument is present, the
return type is structure instead of object.

save Write out the current property values of an object of the target
preferences class.

8-9

8 Using Target Preferences

Making Target Preferences Available to the End User
End users of your target will not normally need to invoke the methods
described in “Target Preferences Class Methods” on page 8-8 (with the
possible exception of the gui method). They only need to know how to open
the Target Preferences Setup window to set the target properties.

The Target Preferences Setup window (shown below) allows the user to

• View and edit the property values.

• Save the property values.

• Reset the property values to their default (factory) values.

• Cancel the edit session.

Target Preferences Setup Window

The simplest way for users to access the Target Preferences Setup window
is to invoke the gui method. This does not require you to provide any
additional code.

A better approach, from the standpoint of usability, is to let the user open
the Target Preferences Setup window from an icon under your target’s
toolbox in the MATLAB Start button. To make your target visible in the
Start button, you must provide an info.xml file in the mytarget/mytarget
directory (see “info.xml” on page 4-17).

To open the Target Preferences Setup window from the Start button, your
info.xml file should also contain a section similar to the following example.
This code provides a callback that executes when the user clicks on a standard

8-10

Making Target Preferences Available to the End User

icon in the Start button. The callback instantiates a z80 target preferences
object and calls the gui method of that object.

<listitem>
<label>Z80 Target Preferences</label>
<callback>z80TargetPrefs = RTW.TargetPrefs.load('z80.prefs');
gui(z80TargetPrefs); </callback>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>
</listitem>

Only the text shown above in bold should be modified.

Once you have added the preceding section to your info.xml file, your
customized target preferences appear in the Start button menu.

Note It is your responsibility to document the user-settable properties of
your target. You should also document how users should access your target’s
preferences.

8-11

8 Using Target Preferences

Using Target Preferences in the Build Process
• “Introduction” on page 8-12

• “Accessing Target Preference Data from MATLAB” on page 8-12

• “Accessing Target Preference Data from TLC” on page 8-12

Introduction
This section discusses how to access your target preference data for use in
the build process, including

• Two ways to access your target preference data in M code

• How to return target preference data to a TLC variable

Accessing Target Preference Data from MATLAB
Accessing target preference data from MATLAB or from an M-file is simpler
than obtaining the same data in TLC. The following code instantiates a z80
target preferences object in the MATLAB workspace, and loads the saved
preferences data into the object. The CompilerName property is then directly
accessed and assigned to a variable.

tp = RTW.TargetPrefs.load('z80.prefs');
targetName = tp.CompilerName;

The next section illustrates how to use the load method to return target
preferences information to a TLC program.

Accessing Target Preference Data from TLC
You should create a mytarget_settings.tlc file to obtain target preferences
data for use in the build process. The mytarget_settings.tlc file is invoked
during the build process by a %include statement in the system target
file. The mytarget_settings.tlc file is also useful for checking user code
generation option settings, and other global settings affecting the code
generation/build process.

As an example, consider the preferences for the z80 target defined in “Using
Target Preferences in the Build Process” on page 8-12. A package/class

8-12

Using Target Preferences in the Build Process

z80.prefs is defined with properties CompilerName and CompilerPath, as
shown in “Creating Your Target Preferences Class” on page 8-4.

The following TLC code examples from z80_settings.tlc show how to
obtain the property values from the z80 target preferences and add them to
the CompiledModel structure used in the build process.

This example performs a MATLAB evaluation of the load method (see
previous section) that returns the property values to an intermediate TLC
variable.

%assign Z80PREFS = FEVAL("RTW.TargetPrefs.load","z80.prefs","structure")

The next example creates a structure (Settings) for the property
values within the CompiledModel record and populates the fields in
CompiledModel.Settings with the data from the z80 target preferences.

%addtorecord CompiledModel Settings Z80PREFS;

CompiledModel.Settings can now be used as required by subsequently
executing TLC code.

Now, consider an example where the target property values could be used in
the build process. Suppose that a requirement for the Z80 target is to support
two compilers. The decision as to which compiler is to be invoked during the
build process is based on the CompilerName property, as set by the user.

The default value of CompilerName is 'AZ80CrossCompiler'. The
AZ80CrossCompiler compiler tool chain is well suited for use with makefiles.
If this compiler is specified, it is invoked using gmake and a template makefile,
as is the case with most compilers invoked by Real-Time Workshop targets.
Normally, a template makefile uses the variable CPP_REQ_DEFINES to contain
a list of all the arguments specific to settings made to the model.

The alternative supported compiler, CodeSamurai, uses project files and COM
automation, rather than a template makefile. If this compiler is specified, a
different action should be taken to create a list of model settings and a list of
files to be included in the project file.

8-13

8 Using Target Preferences

The example code below invokes two TLC utilities (not shown) to generate a
special header file (cpp_req_defines.h) and a list of files.

%if CompiledModel.Settings.CompilerName == "CodeSamurai"
%%
%% Generate cpp_req_defines.h and the list of RTW files resulting
%%from code generation.
%%
%include "gen_cpp_req_defines_h.tlc"
%include "gen_rtw_file_list.tlc"
%%
%else
... do something else for the the AZ80CrossCompiler compiler

%endif

Note that this code does not do any validation of the CompilerName setting. A
more rigorous approach would be to define CompilerName as an enumerated
type taking only two values. This would limit the user to a choice of two
compiler names and avoid typing errors. Other validation could be done using
the CompilerPath property. For example, the CompilerPath information
could be used to access files located in the directories of the specified compiler,
to detect that the proper compiler (or a specific required version of the
compiler) was installed.

8-14

9

Interfacing to Development
Tools

Introduction (p. 9-2) Overview of problems encountered
in interfacing the build process to
development tools, and of approaches
to solving these problems.

Makefile Approach (p. 9-3) Summary of traditional approach
using makefiles and make utilities.

Interfacing to an Integrated
Development Environment (p. 9-4)

Examples of use of COM automation
and project file generation to drive
non-makefile based development
environments.

9 Interfacing to Development Tools

Introduction
Unless you are developing a target purely for code generation purposes, you
will want your embedded target to support a complete build process. A full
post-code generation build process includes

• Compilation of generated code

• Linking of compiled code and runtime libraries into an executable program
module (or some intermediate representation of the executable code, such
as S-Rec format)

• Downloading the executable to target hardware with a debugger or other
utility

• Initiating execution of the downloaded program

Supporting a complete build process is inherently a complex task, because it
involves interfacing to cross-development tools and utilities that are external
to Real-Time Workshop.

If your development tools can be controlled with traditional makefiles and
a make utility such as gmake, it may be relatively simple for you to adapt
existing target files (such as the ert.tlc and ert.tmf files provided by
Real-Time Workshop Embedded Coder) to your requirements. This approach
is discussed in “Makefile Approach” on page 9-3.

Automating your build process through a modern integrated development
environment (IDE) presents a different set of challenges. Each IDE has its
own way of representing the set of source files and libraries for a project and
for specifying build arguments. Interfacing to an IDE may require generation
of specialized file formats required by the IDE (for example, project files)
and, and also may require the use of inter-application communication (IAC)
techniques to run the IDE. One such approach to build automation is discussed
in “Interfacing to an Integrated Development Environment” on page 9-4.

9-2

Makefile Approach

Makefile Approach
A template makefile provides information about your model and your
development system. Real-Time Workshop uses this information to create
an appropriate makefile (.mk file) to build an executable program. The
Real-Time Workshop Embedded Coder provides a number of template
makefiles suitable for host-based compilers such as LCC (ert_lcc.tmf) and
Visual C++ (ert_vc.tmf).

Adapting one of the existing template makefiles to your cross-compiler’s make
utility may require little more than copying and renaming the template
makefile in accordance with the conventions of your project.

If you need to make more extensive modifications, you need to understand
template makefiles in detail. For a detailed description of the structure of
template makefiles and of the tokens used in template makefiles, see Chapter
6, “Template Makefiles”.

The following sections of this document supplement the basic template
makefile information in the Real-Time Workshop documentation:

• “Supporting Multiple Development Environments” on page 5-36

• “Supplying Development Environment Information to Your Template
Makefile” on page 3-17

• “mytarget_default_tmf.m” on page 4-12

9-3

9 Interfacing to Development Tools

Interfacing to an Integrated Development Environment
• “Introduction” on page 9-4

• “Generating a CPP_REQ_DEFINES Header File” on page 9-4

• “Interfacing to the CodeWarrior IDE” on page 9-5

Introduction
This section describes techniques that have been used to integrate embedded
targets with integrated development environment (IDEs), including

• How to generate a header file containing directives to define variables (and
their values) required by a non-makefile based build.

• Some problems and solutions specific to interfacing embedded targets with
the Metrowerks CodeWarrior IDE. The examples provided should help you
to deal with similar interfacing problems with your particular IDE.

Generating a CPP_REQ_DEFINES Header File
In Real-Time Workshop template makefiles, the token CPP_REQ_DEFINES is
expanded and replaced with a list of parameter settings entered with various
dialog boxes. This variable often contains information such as MODEL (name of
generating model), NUMST (number of sample times in the model), MT (model
is multitasking or not), and numerous other parameters (see “Template
Makefiles and Tokens” on page 6-2).

The makefile mechanism provided with Real-Time Workshop handles the
CPP_REQ_DEFINES token automatically. If your target requires use of a project
file, rather than the traditional makefile approach, you can generate a header
file containing directives to define these variables and provide their values.

The following TLC file, gen_rtw_req_defines.tlc, provides an example. The
code generates a C header file, cpp_req_defines.h. The information required
to generate each#define directive is derived either from information in the
model.rtw file (e.g., CompiledModel.NumSynchronousSampleTimes), or from
make variables from the rtwoptions structure (e.g., PurelyIntegerCode).

%% File: gen_rtw_req_defines_h.tlc
%openfile CPP_DEFINES = "cpp_req_defines.h"

9-4

Interfacing to an Integrated Development Environment

#ifndef _CPP_REQ_DEFINES_
#define _CPP_REQ_DEFINES_
#define MODEL %<CompiledModel.Name>
#define ERT 1
#define NUMST %<CompiledModel.NumSynchronousSampleTimes>
#define TID01EQ %<CompiledModel.FixedStepOpts.TID01EQ>
%%
%if CompiledModel.FixedStepOpts.SolverMode == "MultiTasking"
#define MT 1
#define MULTITASKING 1
%else
#define MT 0
#define MULTITASKING 0
%endif
%%
#define MAT_FILE 0
#define INTEGER_CODE %<PurelyIntegerCode>
#define ONESTEPFCN %<CombineOutputUpdateFcns>
#define TERMFCN %<IncludeMdlTerminateFcn>
%%
#define MULTI_INSTANCE_CODE 0
#define HAVESTDIO 0
#endif
%closefile CPP_DEFINES

Interfacing to the CodeWarrior IDE
Interfacing an embedded target’s build process to the CodeWarrior IDE
requires that two problems must be dealt with:

• The build process must generate a CodeWarrior compatible project file.
This problem, and a solution, is discussed in “XML Project Import” on page
9-6. The solution described is applicable to any ASCII project file format.

• During code generation, the target must automate a CodeWarrior session
that opens a project file and builds an executable. This task is described
in “Build Process Automation” on page 9-11. The solution described is
applicable to any IDE that can be controlled with Windows Component
Object Model (COM) automation.

9-5

9 Interfacing to Development Tools

XML Project Import
This section illustrates how to use the Target Language Compiler (TLC) to
generate an eXtensible Markup Language (XML) file, suitable for import into
CodeWarrior, that contains all the necessary information about the source
code generated by an embedded target.

The choice of XML format is dictated by the fact that CodeWarrior supports
project export and import with XML files. As of this writing, native
CodeWarrior project files are in a proprietary binary format.

Note that if your target needs to support some other compiler’s project file
format, you can apply the techniques shown here to virtually any ASCII file
format (see “Generating a CPP_REQ_DEFINES Header File” on page 9-4).

To illustrate the basic concept, consider a hypothetical XML file exported from
a CodeWarrior stationery project. The following is a partial listing:

<target>
<settings>
...

<\settings>
<file><name>foo.c<\name>
<\file>
...
<file><name>foobar.c<\name>
<\file>
<fileref><name>foo.c<\name>
<\fileref>
...
<fileref><name>foobar.c<\name>
<\fileref>

<\target>

Insert this XML code into an %openfile/%closefile block within a TLC file,
test.tlc, as shown below.

%% test.tlc
%% This code will generate a file model_project.xml,
%% where model is the generating model name specified in
%% the CompiledModel.Name field of the model.rtw file.

9-6

Interfacing to an Integrated Development Environment

%openfile XMLFileContents = %<CompiledModel.Name>_project.xml
<target>

<settings>
...

<\settings>
<file><name>%<CompiledModel.Name>.c<\name>
<\file>
...
<file><name>foobar.c<\name>
<\file>
<fileref><name>%<CompiledModel.Name>.c<\name>
<\fileref>
...
<fileref><name>foobar.c<\name>
<\fileref>

<\target>
%closefile XMLFileContents
%selectfile NULL_FILE

Note the use of the TLC token CompiledModel.Name. The token is resolved
and the resulting filename is included in the output stream. You can specify
other information, such as paths and libraries, in the output stream by
specifying other tokens defined in model.rtw. For example, System.Name may
be defined as <Root>/Susbsystem1.

Now suppose that test.tlc is invoked during a target’s build process,
where the generating model is mymodel.mdl. This should be done after the
codegenentry statement. For example, test.tlc could be included directly
in the system target file:

%include "codegenentry.tlc"
%include "test.tlc"

Alternatively, the %include "test.tlc" directive could be inserted into the
mytarget_genfiles.tlc hook file, if present.

TLC tokens such as

<file><name>%<CompiledModel.Name>.c<\name>

are expanded, with the CompiledModel record in the mymodel.rtw file, as in

9-7

9 Interfacing to Development Tools

<file><name>mymodel.c<\name>

test.tlc generates an XML file, file model_project.xml, from any
model. model_project.xml contains references to generated code files.
model_project.xml can be imported into CodeWarrior as a project.

The following flowchart summarizes this process.

9-8

Interfacing to an Integrated Development Environment

��������<�����+������
,��6���	%�����	����������	����

�������		
�	���������	� ,���	��	7�1!

�����H�
<�7�1	,��6���	����

�����#�&�	
�<(1�	����	���
����������	7�1	����

������������	�H�
<
'��������	7�1	,��6���	����
����	���������	����	����������
���	��������,������
�����������

������������	����<
����+������	,��6���	%�����
����

�������
��	��������8	0��	(1�	�����	��
��������	����������	��	�����	�����$	�0(10�
���	�����	,����$	���	�����	��������!	��%��
���	7�1	����	�����	����	�����	��
���&�!
�C�
����!
��%���!	
���	��
�����#�&�	
��

���8	2�����	����	����������$	� ,���	(1�
�����	���	��������	7�1	,��6���	����$
������������	�H�
�

�������		
�	���������	��
�����	
���8
"�,���	����	7�1!

�������		
�	���������	��
�����	
���8
�����	,��6���	��	���������	��	/�����
�������	0���������/!

9-9

9 Interfacing to Development Tools

Note This process has drawbacks. First, manually editing an XML file
exported from a CodeWarrior stationery project can be a laborious task,
involving modification of a few dozen lines embedded within several thousand
lines of XML code. Second, if you make changes to the CodeWarrior project
after importing the generated XML file, the XML file must be exported and
manually edited once again.

9-10

Interfacing to an Integrated Development Environment

Build Process Automation
An application that supports COM automation can control any other
application that includes a COM interface. Using MATLAB COM automation
functions, an M-file can command a COM-compatible development system to
execute tasks required by the build process.

The MATLAB COM automation functions described in this section are
documented in the COM and DDE Support chapter of the MATLAB External
Interfaces document.

For information about automation commands supported by CodeWarrior,
see your CodeWarrior documentation.

COM automation is used by some embedded targets (for example, Target
for Freescale™ MPC5xx) to automate the Metrowerks CodeWarrior IDE to
execute tasks such as:

• Opening a new CodeWarrior session

• Configure a project

• Loading a CodeWarrior project file

• Removing object code from the project

• Building or rebuilding the project

• Debug an application

COM technology automates certain repetitive tasks and allows the user to
interact directly with the external application. For example, when the end
user of Target for Freescale™ MPC5xx initiates a build, the target quickly
invokes the necessary CodeWarrior actions and leaves a project built and
ready to run with the IDE.

9-11

9 Interfacing to Development Tools

Example COM Automation Functions. The functions below use the
MATLAB actxserver command to invoke COM functions for controlling
CodeWarrior from a MATLAB M-file:

• CreateCWComObject: Create a COM connection to CodeWarrior.

• OpenCW: Open CodeWarrior without opening a project.

• OpenMCP: Open the CodeWarrior project file (.mcp file) specified by the
input argument.

• BuildCW: Open the specified .mcp file, remove object code, and build project.

These functions are examples; they do not constitute a full implementation
of a COM automation interface. If your target creates the project file during
code generation, the top-level BuildCW function should be called after the code
generation process is completed. Normally BuildCW would be called from the
exit method of your STF_make_rtw_hook.m file (see “STF_make_rtw_hook.m”
on page 4-13).

In the code examples, the variable in_qualifiedMCP is assumed to store a
fully qualified path to a CodeWarrior project file (for example, path, filename,
and extension). For example:

in_qualifiedMCP = 'd:\work\myproject.mcp';

In actual practice, your code is responsible for determining the conventions
used for the project filename and location. One simple convention would be to
default to a project file model.mcp, located in your target’s build directory.
Another approach would be to let the user specify the location of project files
with the target preferences.

9-12

Interfacing to an Integrated Development Environment

%==

% Function: CreateCWComObject

% Abstract: Creates the COM connection to CodeWarrior

%

function ICodeWarriorApp = CreateCWComObject

vprint([mfilename ': creating CW com object']);

try

ICodeWarriorApp = actxserver('CodeWarrior.CodeWarriorApp');

catch

error(['Error creating COM connection to ' ComObj ...

'. Verify that CodeWarrior is installed correctly. Verify COM access to

CodeWarrior outside of MATLAB.']);

end

return;

%==

% Function: OpenCW

% Abstract: Opens CodeWarrior without opening a project. Returns the

% handle ICodeWarriorApp.

%

function ICodeWarriorApp = OpenCW()

ICodeWarriorApp = CreateCWComObject;

CloseAll;

OpenMCP(in_qualifiedMCP);

%===

% Function: OpenMCP

% Abstract: open an MCP project file

%

function OpenMCP(in_qualifiedMCP)

% Argument checking. This method requires valid project file.

if ~exist(in_qualifiedMCP)

error([mfilename ': Missing or empty project file argument']);

end

if isempty(in_qualifiedMCP)

error([mfilename ': Missing or empty project file argument']);

end

ICodeWarriorApp = CreateCWComObject;

9-13

9 Interfacing to Development Tools

vprint([mfilename ': Importing']);

try

ICodeWarriorProject = ...

invoke(ICodeWarriorApp.Application,...

'OpenProject', in_qualifiedMCP,...

1,0,0);

catch

error(['Error using COM connection to import project. ' ...

' Verify that CodeWarrior is installed correctly. Verify COM access to

CodeWarrior outside of MATLAB.']);

end

%===

% Function: BuildCW

% Abstract: Opens CodeWarrior.

% Opens the specified CodeWarrior project.

% Deletes objects.

% Builds.

%

function ICodeWarriorApp = BuildCW(in_qualifiedMCP)

% ICodeWarriorApp = BuildCW;

ICodeWarriorApp = CreateCWComObject;

CloseAll;

OpenMCP(in_qualifiedMCP);

try

invoke(ICodeWarriorApp.DefaultProject,'RemoveObjectCode', 0, 1);

catch

error(['Error using COM connection to remove objects of current project. ' ...

'Verify that CodeWarrior is installed correctly. Verify COM access to

CodeWarrior outside of MATLAB.']);

end

try

invoke(ICodeWarriorApp.DefaultProject,'BuildAndWaitToComplete');

catch

error(['Error using COM connection to build current project. ' ...

'Verify that CodeWarrior is installed correctly. Verify COM access to

CodeWarrior outside of MATLAB.']);

end

9-14

10

Developing Device Drivers
for Embedded Targets

Overview (p. 10-2) Topical summary, pointers to
related documentation, discussion
of tradeoffs in device driver
development techniques, and
pointers to an example device driver.

Writing a Device Driver C-MEX
S-Function (p. 10-6)

How to write a C MEX-file simulation
driver block in compliance with the
S-function API.

Creating a User Interface for Your
Driver (p. 10-18)

How to create a mask for your
simulation driver block; how to
obtain and use block parameter
values from the user interface.

Building the MEX-File and the
Driver Block (p. 10-25)

Mechanics of building the C MEX-file
for your driver and binding it to an
S-Function block.

Inlining the S-Function Device
Driver (p. 10-26)

Creating a TLC implementation of
your driver block generating code
from your driver.

Creating Device Drivers with the
S-Function Builder (p. 10-34)

Procedures for generating basic
device drivers with the Simulink
S-Function Builder, and for
customizing the generated drivers.

Device Drivers in Simulation
(p. 10-46)

Multiple-model and single-model
approaches to using device driver
blocks in simulation.

10 Developing Device Drivers for Embedded Targets

Overview
• “Introduction” on page 10-2

• “Related Documentation” on page 10-2

• “Tradeoffs in Device Driver Development” on page 10-3

• “Example Device Driver” on page 10-5

Introduction
Device drivers that communicate with target hardware are essential to many
real-time development projects. This chapter discusses issues and solutions in
the creation of device drivers specifically for embedded targets. This process
includes incorporating drivers into your Simulink model and into the code
generated from that model.

This chapter describes techniques for implementing device drivers as fully
inlined S-functions. Like other inlined S-functions, fully inlined device drivers
have a dual implementation:

• A C MEX S-function is implemented, primarily for use in simulation.

• A TLC implementation is created for use in code generation.

This chapter does not discuss the implementation of noninlined device drivers
in detail. Although the Real-Time Workshop Embedded Coder supports
noninlined S-functions, you should use inlined device drivers for embedded
applications, for reasons of efficiency. See “Inlined vs. Noninlined Drivers” on
page 10-4 for a discussion of the tradeoffs.

Related Documentation
To implement device drivers, you should be familiar with the Simulink C
MEX S-function format and API, and with the Target Language Compiler
(TLC). These topics are covered in the following documents:

• The Simulink Writing S-Functions document describes C MEX S-functions
and the S-function API in general. Writing S-Functions also describes how
to access parameters from a masked S-function.

10-2

Overview

• The “Writing S-Functions for Real-Time Workshop” chapter of the
Real-Time Workshop documentation is particularly important. It describes
inlining, and how to use the special mdlRTW function to parameterize an
inlined S-function.

• “About Masks” in the Using Simulink document describes how to mask
S-function blocks (instructions are similar to masking subsystem or model
blocks).

• The MATLAB External Interfaces document explains how to write C and
other programs that interact with MATLAB with the MEX API. The
Simulink S-function API is built on top of this API. To pass parameters to
your device driver block from MATLAB and/or Simulink, you must use
the MEX API. The MATLAB C and Fortran Function Reference contains
reference descriptions for the required MATLAB mx* routines.

• The Real-Time Workshop Target Language Compiler document describes
how to customize code generation for blocks and targets. Knowledge of the
Target Language Compiler is required in order to inline S-functions. The
Target Language Compiler document also describes the structure of the
model.rtw file.

Tradeoffs in Device Driver Development

Hand Coding vs. S-Function Builder
Part of the task of device driver creation is to create a C MEX-file, primarily
for use in simulation. Traditionally, C MEX-files are written manually, often
using S-function template provided by Real-Time Workshop as a starting
point. Most of this chapter is concerned with manually written device driver
code.

If you have little experience in writing S-functions, you can simplify the
process of implementing your C MEX-file by using the Simulink S-Function
Builder. This alternative is described in “Creating Device Drivers with the
S-Function Builder” on page 10-34.

Note that use of the S-Function Builder does not completely eliminate the
need to write code. You must still write TLC code to generate inlined code
from your driver. Furthermore, the S-Function Builder only imports a subset

10-3

10 Developing Device Drivers for Embedded Targets

of the S-Function API. Consequently, it may be necessary to modify the C
MEX-files created by the S-Function Builder.

Inlined vs. Noninlined Drivers
You can use inlined or non-inlined S-functions with the Real-Time Workshop
Embedded Coder. A benefit of non-inlined S-functions is that you do not
have to write TLC code. However, for embedded systems development, fully
inlined device drivers have numerous advantages. Inlined device drivers are
an appropriate design choice when:

• You need production code generated from the S-function to behave
differently than code used during simulation. This is almost always the
case when developing device drivers. For example, an output device
block may write to a hard device address in generated code, but during
simulation, this address may be illegal. The driver should therefore
perform no output during simulation.

This dual behavior can be achieved in a noninlined S-function, but only by
use of awkward compiler conditionals.

• You want to avoid overhead associated with calling the S-function API.

• You want to avoid writing stub routines (to satisfy the S-function API) that
have no purpose in your generated code.

• You want to reduce memory usage. Note that each noninlined S-function
creates its own Simstruct. Each Simstruct uses over 1K of memory.
Inlined S-functions do not allocate any Simstruct.

• You want to take advantage of the mdlRTW function. Implementing a mdlRTW
function gives you maximum flexibility in communicating parameter data
from the model to the model.rtw file during code generation. The mdlRTW
mechanism is only available to inlined S-functions.

In device driver development, achieving minimal memory usage and
maximum code performance are usually the most important considerations.
From this standpoint, there are no compelling reasons for creating noninlined
drivers.

10-4

Overview

Example Device Driver
Real-Time Workshop Embedded Coder provides an example of a manually
written and fully inlined input device driver, ADC_examp, to accompany the
discussions in later sections. This driver supports the analog-to-digital
converter (ADC) device on the Freescale™ HC12 microcontroller. A complete
driver implementation is available in the directory

matlabroot/toolbox/rtw/targets/common/examples/ADC_driver_example

The driver files include

• ADC_examp.c: Source code for simulation driver S-function

• ADC_examp.mexext: C MEX-file built from ADC_examp.c (mexext is a
platform-dependent file extension, such as .mexw32 on 32-bit Windows)

• ADC_examp.tlc: TLC implementation for inlined code generation

• ADC_library.mdl: Simulink library containing masked S-function driver
block for use in simulation

• ADC_examp_model.mdl: Simple example model that uses the block. This
model is configured for ERT code generation only.

If you have a host-target development environment for targeting the
Freescale™ HC12 embedded processor, including the required compiler and
development boards, you can use the ADC_examp driver in simulation and to
generate, download, and run an executable with inlined driver code.

Otherwise, you can select the ERT target and use the ADC_examp driver in
simulation and to generate code.

10-5

10 Developing Device Drivers for Embedded Targets

Writing a Device Driver C-MEX S-Function
• “Overview” on page 10-6

• “Required Defines and Include Files” on page 10-7

• “Other Preprocessor Symbols” on page 10-8

• “Functions Required by the S-Function API” on page 10-8

Overview
This discussion assumes that you are implementing a driver as a fully inlined
S-function. For use in simulation, you must provide a C-MEX S-function.
Since this S-function is used only in simulation, it is relatively simple to
implement. The S-function may contain functions that:

• Initialize the SimStruct.

• Display information in the MATLAB window during simulation.

• Validate block parameter data input by the user.

• Implement a mdlRTW function for passing data to the model.rtw file.

You should use the S-function template provided by Real-Time Workshop
as a starting point for developing your simulation driver S-function. The
template file is

matlabroot/simulink/src/sfuntmpl_basic.c

An extensively commented version of the S-function template is also available.
See matlabroot/simulink/src/sfuntmpl_doc.c.

Alternatively, you can use the ADC_examp driver (see “Example Device Driver”
on page 10-5) as a starting point for your driver.

Your S-function must implement certain specific functions required by the
S-function API. These are described in “Functions Required by the S-Function
API” on page 10-8. Since these functions are private to the source file, you can
incorporate multiple instances of the same S-function into a model.

10-6

Writing a Device Driver C-MEX S-Function

Note Device driver S-functions used in simulation should not contain code
that is intended to operate in real time on the target hardware, or that
accesses actual target hardware addresses. Since your target I/O hardware is
not present during simulation, writing to addresses in the target environment
can result in illegal memory references, overwriting system memory, and
other severe errors. Similarly, read operations from nonexistent hardware
registers can cause model execution errors.

Required Defines and Include Files
Your driver S-function must begin with the following three statements, in the
following order:

1 #define S_FUNCTION_NAME name

This defines the name of the entry point for the S-function code. name must
be the name of the S-function source file, without the file extension. For
example, if the S-function source file is example_hc12_sfcn_adc_v.c:

#define S_FUNCTION_NAME example_hc12_sfcn_adc_v

2 #define S_FUNCTION_LEVEL 2

This statement defines the file as a level 2 S-function. This allows you to
take advantage of the full feature set included with S-functions. Level-1
S-functions are currently used only to maintain backwards compatibility.

3 #include "simstruc.h"

The file simstruc.h defines the SimStruct (the Simulink data structure)
and associated accessor macros. It also defines access methods for the mx*
functions from the MATLAB MEX API.

The final statement in your S-function is equally critical. Assuming that
your S-function contains only simulation code, your code must end with the
following.

#include "simulink.c"

simulink.c provides required functions interfacing to Simulink.

10-7

10 Developing Device Drivers for Embedded Targets

Other Preprocessor Symbols
Real-Time Workshop defines several preprocessor symbols that affect how
S-functions are built. The conventions for use of these symbols are as follows:

• MATLAB_MEX_FILE

When you build your S-function as a MEX-file with the mex command,
MATLAB_MEX_FILE is automatically defined.

A test on MATLAB_MEX_FILE, such as the following, is useful in drivers that
contain only simulation code intended for use in an S-function. This test
ensures that the driver S-function is compiled only as a C MEX-file.

#ifndef MATLAB_MEX_FILE

#error "Fatal Error: ADC_examp.c can only be used to create C-MEX S-Function"

#endif

• MDL_START

The model execution loop calls mdlStart only if the symbol MDL_START
is declared with a #define statement. If you write a mdlStart function
without defining MDL_START, an “unreferenced function” compile-time
warning occurs when you build your S-function, and the mdlStart code
is never be called during simulation. See “mdlStart” on page 10-13 for
an example.

Functions Required by the S-Function API
The S-function API requires you to implement several functions in your
simulation driver:

• mdlInitializeSizes specifies the sizes of various parameters in the
SimStruct, such as the number of output ports for the block.

• mdlInitializeSampleTimes specifies the sample time(s) of the block.

If your device driver block is masked, your initialization functions can
obtain the sample time and other parameters entered by the user in the
block’s dialog box.

10-8

Writing a Device Driver C-MEX S-Function

• mdlOutputs: For an input device, mdlOutputs usually outputs a nominal
value (such as zero) on all channels during simulation. Another approach
is to replicate the block’s inputs at the outputs. For an output device,
mdlOutputs can be implemented as a stub.

• mdlTerminate: This function can be implemented as a stub.

In addition to the above, you may want to implement the mdlStart function.
mdlStart is called once at the start of model execution.

This following sections provide guidelines for implementing these functions.
Code examples are taken from the example input device driver, ADC_examp.

Macro and Symbol Definitions for ADC_examp.c
ADC_examp.c defines the following symbols and macros, referenced
throughout the code examples below. Note how the example optimizes storage
space by using an enum statement to define a set of masks that correspond to
bit positions in a single word representing the device data.

#define TRUE 1

#define FALSE 0

/* Total number of block parameters */

#define N_PAR 5

/*

* CHANNELARRAY_ARG - Array of ADC channels (one or more values between 0 and 7)

* Signal width is also determined from this list

* SAMPLETIME(S) - Sample time

% ATDBANK(S) - Bank 0, or Bank 1. Each bank provides 8 channels.

* USE10BITS(S) - If (USE10BITS_ARGC==1), use 10-bits of ADC resolution

* otherwise, use 8-bits ADC resolution

* LEFTJUSTIFY(S) - If (LEFTJUSTIFY_ARGC==1), left justify the result in

* 16-bit word. Else, use right justification (default)

*/

10-9

10 Developing Device Drivers for Embedded Targets

/* Define a set of masks that correspond to bit positions in a single word

* representing device data.

*/

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC,

SAMPLETIME_ARGC};

#define ATDBANK(S) (mxGetScalar(ssGetSFcnParam(S,ATDBANK_ARGC)))

#define CHANNELARRAY_ARG(S) (ssGetSFcnParam(S,CHANNELARRAY_ARGC))

#define USE10BITS(S) (mxGetScalar(ssGetSFcnParam(S,USE10BITS_ARGC)))

#define LEFTJUSTIFY(S) (mxGetScalar(ssGetSFcnParam(S,LEFTJUSTIFY_ARGC)))

#define SAMPLETIME(S) (mxGetScalar(ssGetSFcnParam(S,SAMPLETIME_ARGC)))

mdlInitializeSizes
The mdlInitializeSizes function specifies the sizes of various parameters
in the SimStruct. In example below, this information partially depends upon
the parameters passed to the S-function. See “Creating a User Interface for
Your Driver” on page 10-18 for information on how to access parameter values
specified in S-function dialog boxes.

The mdlInitializeSizes function for the example input device driver,
ADC_examp, is listed below.

static void mdlInitializeSizes(SimStruct *S)
{

const unsigned int *paramPtr = mxGetData(CHANNELARRAY_ARG(S));
int nChannels, paramDataTypeFlag;
/* Set and Check parameter count */

ssSetNumSFcnParams(S, N_PAR);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) return;

nChannels = mxGetNumberOfElements(CHANNELARRAY_ARG(S));

/* Single input port of width equal to nChannels */
if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, nChannels);

10-10

Writing a Device Driver C-MEX S-Function

/* Single output port of width equal to nChannels */
if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, nChannels);

/* Set datatypes on input and output ports relative
* to users choice of 8-, or, 10-bit resolution.
*/
if (USE10BITS(S))
{

/*
* Input and output datatypes are uint16
* when using 10-bit ADC resolution
*/
ssSetInputPortDataType(S, 0, SS_UINT16);
ssSetOutputPortDataType(S, 0, SS_UINT16);

} else {
/*
* Input and output datatypes are uint8
* when using 8-bit ADC resolution
*/
ssSetInputPortDataType(S, 0, SS_UINT8);
ssSetOutputPortDataType(S, 0, SS_UINT8);

}

ssSetInputPortDirectFeedThrough(S, 0, TRUE);

/* sample times */
ssSetNumSampleTimes(S, 1);

/* options */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
} /* end mdlInitializeSizes */

The above mdlInitializeSizes function does the following, in order:

• Validates that the number of input parameters is equal to the expected
number of parameters in the block’s dialog box (N_PARS).

• Obtains nChannels, the number of ADC channels (specified as a vector in
the Channels parameter of the block dialog box). The widths of the input

10-11

10 Developing Device Drivers for Embedded Targets

and output ports are set equal to nChannels. Notice that the code ensures
that the block has exactly one input port and one output port.

• Obtains the user-selected resolution value (returned by USE10BITS) and
sets the port data types for the block.

• Sets the direct feedthrough property of the block to TRUE. (In simulation,
the ADC_examp output is replicated from the block input you would normally
connect the ADC_examp input to a Ground.)

Note that in many cases, input driver blocks do not have input ports. (Input
ports can be used, however, to provide pass-through capability to a driver
during simulation. See “Device Drivers in Simulation” on page 10-46 for
further information.) If your input driver block has no input ports, set the
number of input ports to 0.

ssSetNumInputPorts(S, 0);

• Calls ssSetNumSampleTimes to set the number of sample times to 1. This is
correct for a driver where all ADC channels run at the same rate. Note that
the actual sample period for the block is set in mdlInitializeSampleTimes.

• Specifies the following S-function option SS_OPTION_EXCEPTION_FREE_CODE.
This option declares that the block does not throw exceptions. Use this
option with care. See “Exception Free Code” in the Simulink Writing
S-Functions document.

mdlInitializeSizes for Output Drivers
Initializing size information for an output device, such as a DAC, differs in
important ways from initializing sizes for an ADC:

• A DAC is a sink block. That is, it has input ports but typically has no
output ports. (Output ports can be used, however, to provide pass-through
capability to a driver during simulation. See “Device Drivers in Simulation”
on page 10-46 for further information.) If your output driver block has no
output ports, set the number of output ports to 0.

ssSetNumOutputPorts(S, 0);

10-12

Writing a Device Driver C-MEX S-Function

• Since a DAC obtains its inputs from other blocks, the number of channels is
equal to the number of inputs.

• A DAC block has direct feedthrough. The DAC block cannot execute until
the block feeding it updates its outputs.

mdlInitializeSampleTimes
Device driver blocks are discrete blocks, requiring you to set a sample time.
The procedure for setting sample times is the same for both input and output
device drivers. Assuming that all channels of the device run at the same rate,
the S-function has only one sample time.

The following implementation of mdlInitializeSampleTimes (from
ADC_examp) obtains the sample time from the block’s dialog box. The sample
time offset is set to 0.

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, SAMPLETIME(S));

} /* end mdlInitializeSampleTimes */

mdlStart
mdlStart is an optional function. It is called once at the start of model
execution. In ADC_examp, mdlStart simply displays a message in the
MATLAB Command Window:

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
static void mdlStart(SimStruct *S)
{
/* During simulation, just print a message */

if (ssGetSimMode(S) == SS_SIMMODE_NORMAL) {
mexPrintf("\n ADC_examp driver: Simulating initialization\n");
}

}
#endif /* MDL_START */

10-13

10 Developing Device Drivers for Embedded Targets

Note The model execution loop calls mdlStart only if the symbol MDL_START
is declared as shown above. If you write a mdlStart function without defining
MDL_START, an “unreferenced function” compile-time warning occurs when
you build your S-function, and the mdlStart code is never be called during
simulation.

mdlOutputs
All S-functions implement a mdlOutputs function to calculate block outputs.
For many simulation drivers, this is a simple task. In the simplest case, the
mdlOutputs function for an input simulation driver generates a nominal value
(usually 0), on all channels. The following code fragment, from a hypothetical
simulation driver for an ADC with a fixed number of channels, illustrates
this approach.

for (i = 0; i < NUM_CHANNELS; i++){
y[i] = 0.0;

}

An output simulation driver, which is a sink, can often be implemented as a
stub.

The ADC_examp driver implements a more complex mdlOutputs function,
listed below.

static void mdlOutputs(SimStruct *S, int_T tid)

{

/*

* Get "uPtrs" for input port 0 and 1.

* uPtrs is essentially a vector of pointers because the input signal may

* not be contiguous.

*/

DTypeId y0DataType; /* SS_UINT8 or SS_UINT16 */

int_T y0Width = ssGetOutputPortWidth(S, 0);

InputPtrsType u0Ptrs = ssGetInputPortSignalPtrs(S,0);

10-14

Writing a Device Driver C-MEX S-Function

/*

* Get data type Identifier for output port 0.

* This matches the data type ID for input port 0.

*/

y0DataType = ssGetOutputPortDataType(S, 0);

y0Width = ssGetOutputPortWidth(S, 0);

/*

* Set output signals equal to input signals

* for either 16 bit, or 8 bit signals.

*/

switch (y0DataType)

{

case SS_UINT8:

{

uint8_T *pY0 = (uint8_T *)ssGetOutputPortSignal(S,0);

InputUInt8PtrsType pU0 = (InputUInt8PtrsType)u0Ptrs;

int i;

/* Set all outputs equal to inputs */

for(i = 0; i < y0Width; ++i){

pY0[i] = *pU0[i];

/* For 8-bit ADC results, left-justify is ignored. */

}

break;

}

10-15

10 Developing Device Drivers for Embedded Targets

case SS_UINT16:

{

uint16_T *pY0 = (uint16_T *)ssGetOutputPortSignal(S,0);

InputUInt16PtrsType pU0 = (InputUInt16PtrsType)u0Ptrs;

int i;

for(i = 0; i < y0Width; ++i){

/* Set all outputs equal to inputs */

if (LEFTJUSTIFY(S)) {

/* Shift left for left justify */

pY0[i] = *pU0[i]<<6;

} else {

/* No shift required for right justify */

pY0[i] = *pU0[i];

}

}

break;

}

} /* end switch (y0DataType) */

} /* end mdlOutputs */

This mdlOutputs function is designed to handle the following requirements:

• Rather than simply generating zeroes, the block passes through an input
signal for use in simulation by simply setting outputs equal to inputs.

• I/O ports are variably typed to be either uint8 or uint16, depending on
the user’s choice of ADC resolution. The port data type is obtained with
the call

y0DataType = ssGetOutputPortDataType(S, 0);

A switch(y0DataType)statement then determines how the input signal
is passed to the output. In the 16-bit case, the data may be right-shifted
(justified).

10-16

Writing a Device Driver C-MEX S-Function

• I/O port widths are variable, in accordance with the number of ADC
channels (specified as a vector in the Channels parameter of the block
dialog box). The port width is obtained with the call

int_T y0Width = ssGetOutputPortWidth(S, 0);

y0Width is then used to control iteration over the I/O signals:

for(i = 0; i < y0Width; ++i){
pY0[i] = *pU0[i];

}

mdlTerminate
In ADC_examp, the mdlTerminate function is provided as a stub, to satisfy the
requirements of the S-function API.

static void mdlTerminate(SimStruct *S)
{
} /* end mdlTerminate */

10-17

10 Developing Device Drivers for Embedded Targets

Creating a User Interface for Your Driver
• “Using a Masked Device Driver Block” on page 10-18

• “Obtaining and Using a Scalar Parameter” on page 10-23

• “Obtaining and Using a Vector Parameter” on page 10-24

Using a Masked Device Driver Block
You can add a custom icon, dialog box, and initialization commands to an
S-Function block by masking it. This provides an easy-to-use graphical user
interface for your device driver in the Simulink environment.

This section uses examples drawn from an actual masked device driver block.
You should have basic familiarity with the creation and use of masked blocks.
These topics are discussed in the Using Simulink and Simulink Writing
S-Functions documents.

The example driver, ADC_examp, is an input device driver. To follow
the examples in this section, launch ADC_examp_model.mdl from
matlabroot/toolbox/rtw/targets/common/examples/ADC_driver_example.

10-18

Creating a User Interface for Your Driver

ADC_examp illustrates a number of techniques for parameterizing a driver by
letting the user enter hardware-related variables. Dialog Box for ADC_examp
Driver Block on page 10-20 shows the dialog box that ADC_examp presents to
the user. To launch the dialog box, right-click the ADC S-Function block in
the model and select Mask Parameters. Parameter values are shown at
their default values.

10-19

10 Developing Device Drivers for Embedded Targets

Dialog Box for ADC_examp Driver Block

The Simulink user can enter the following parameters:

• ADC bank (menu): Selects one of two 8-channel ADC banks (either bank
0 or 1).

• Channels (edit field): Specifies input channel(s) to be read. Channels are
numbered in the range 0-7. Selected channels are represented as a vector.

• ADC resolution (menu): Selects either 8 bits or 10 bits of resolution. If 10
bit resolution is selected, the input signal data is stored in 16 bits.

• Word alignment (menu): If ADC resolution is set to 10 bits, the user
can select either right or left justification of input data within a 16-bit
word. If ADC resolution is set to 8 bits, input data is stored as a uint8,
and Word alignment is ignored.

• Sample time (edit field): Specifies sample time for the block.

You specify block parameters in the Parameters pane of the Simulink Mask
Editor. To launch the Mask Editor, right-click the ADC_examp S-Function block
and select View Mask. You can then select the Parameters pane.

10-20

Creating a User Interface for Your Driver

The preceding figure shows how the parameter section of the mask is defined
for the ADC_examp driver. In the ADC_examp driver, block parameters are
declared nontunable in the block mask. If you do not do this, you can declare
parameters nontunable by using the ssSetParameterTunable macro in the
mdlInitializeSizes routine. Nontunable S-function parameters become
constants in the generated code, improving performance.

In certain cases, you may want your driver block to be self-modifying. For
example, the block may have a parameter that lets the user set the number of
input or output ports on the block. In such cases, you should select the Allow
library block to modify its contents option in the Initialization pane of
the Mask Editor (see “Mask Editor” in the Simulink documentation).

To view the block parameters underlying the mask, right-click the ADC
S-Function block and select Look Under Mask.

10-21

10 Developing Device Drivers for Embedded Targets

The block parameters underlying the mask, as shown in the preceding figure,
provide a binding to the C-MEX S-function for use in simulation, and a list
of parameter variables corresponding to the S-function parameters field.
Note that:

• Values returned from menus are offset by -1 (because menus are 1-based).

• Parameter variables, except sampletime, are explicitly cast to unsigned
integer data types. The S-function parameters field contains the
following list of expressions.

uint8(bank-1), uint16(channels), uint8(use10bits-1), uint8(left_justify-1),

sampletime

During the build process, parameter expressions are evaluated and the
resultant values are written to Parameter records in the model.rtw file.
These records are used when code is generated by the TLC implementation
of the block (see “Inlining the S-Function Device Driver” on page 10-26).

It is typical for a device driver block to read and validate input parameters
in its mdlInitializeSizes function. A masked S-Function block obtains
parameter data from its dialog box using macros and functions provided for
the purpose. Let us examine some cases from the mdlInitializeSizes
function of ADC_examp.c.

10-22

Creating a User Interface for Your Driver

Obtaining and Using a Scalar Parameter
In the following code excerpt, the macro USE10BITS is defined. When invoked,
USE10BITS returns the value obtained from the ADC resolution menu.

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC,

SAMPLETIME_ARGC};

...

#define USE10BITS(S) (mxGetScalar(ssGetSFcnParam(S,USE10BITS_ARGC)))

...

/* Set datatypes on input and output ports relative

* to users choice of 8-, or, 10-bit resolution.

*/

if (USE10BITS(S))

{

/*

* Input and output datatypes are uint16

* when using 10-bit ADC resolution

*/

ssSetInputPortDataType(S, 0, SS_UINT16);

ssSetOutputPortDataType(S, 0, SS_UINT16);

} else {

/*

* Input and output datatypes are uint8

* when using 8-bit ADC resolution

*/

ssSetInputPortDataType(S, 0, SS_UINT8);

ssSetOutputPortDataType(S, 0, SS_UINT8);

}

The parameter from the dialog box is accessed with the ssGetSFcnParam
macro. The arguments to ssGetSFcnParam are a pointer to the block’s
Simstruct, and the index (0-based) to the desired parameter.

Parameters are stored in arrays of type mxArray, even if there is only a
single value. In the above code, the value of the first element of the mxArray
returned by ssGetSFcnParam is obtained with the mxGetScalar function.

The value returned by USE10BITS is used to set the port data types for the
block, in accordance with the user-selected resolution. The larger (uint16)
data type is used only when necessary.

10-23

10 Developing Device Drivers for Embedded Targets

Obtaining and Using a Vector Parameter
This section shows another code excerpt that illustrates the use of a vector
parameter. You enter the Channels parameter as a vector of channels in
the range 0..7. The macro CHANNELARRAY_ARG returns this vector, and the
mxGetNumberOfElements function is called to obtain the number of vector
elements. The port widths for the block are set accordingly.

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC,

SAMPLETIME_ARGC};

...

#define CHANNELARRAY_ARG(S) (ssGetSFcnParam(S,CHANNELARRAY_ARGC))

...

nChannels = mxGetNumberOfElements(CHANNELARRAY_ARG(S));

/* Single input port of width equal to nChannels */

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, nChannels);

/* Single output port of width equal to nChannels */

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, nChannels);

The MathWorks recommends that you study the entire mdlInitializeSizes
function of ADC_Examp.c for further examples of the use of masked block
parameters in the context of a device driver.

10-24

Building the MEX-File and the Driver Block

Building the MEX-File and the Driver Block
This section outlines how to build a MEX-file from your driver source code for
use in Simulink. For full details on how to use mex to compile an executable
MEX-file, see the MATLAB External Interfaces document:

1 Your C S-function source code should be in your working directory. To build
a MEX-file from mydriver.c, type

mex mydriver.c

mex builds mydriver.mexext, where mexext is a platform-dependent file
extension such as mexw32 (32-bit Windows).

2 Add an S-Function block (from the Simulink Functions & Tables library in
the Library Browser) to your model.

3 Double-click the S-Function block to open the Block Parameters dialog
box. Enter the S-function name mydriver. The block is now bound to the
mydriver MEX-file.

4 Create a mask for the block if you want to use a custom icon or dialog box
(see “Creating a User Interface for Your Driver” on page 10-18).

5 You should create a block library and add your driver to it, or add your
driver to an existing block library. See “Working with Block Libraries” in
the Using Simulink document to learn how to do this.

Making Your Drivers Available to Users
Your driver implementation files should be stored in a directory that is on
the MATLAB path. You should create a blocks directory under your target
root directory (for example, mytarget/blocks). The blocks directory should
contain

• Compiled block MEX-files

• C source code for the blocks

• TLC inlining files for the blocks

• Library models for the blocks. You should place your blocks in one or more
libraries.

10-25

10 Developing Device Drivers for Embedded Targets

Inlining the S-Function Device Driver
• “Code Components” on page 10-26

• “Inlined Device Driver Operations” on page 10-27

• “Inlining the Example ADC Driver” on page 10-27

Code Components
To create a fully inlined device driver, you must provide the following
components:

• driver.c: C MEX S-function source code, implementing the functions
required by the S-function API for a simulation driver. (See “Writing a
Device Driver C-MEX S-Function” on page 10-6.) For these functions, only
the code for simulation in Simulink is required.

Optionally, driver.c may implement a mdlRTW function. The sole purpose
of this function is to evaluate and format parameter data during code
generation. The parameter data is output to the model.rtw file. See
“Passing and Obtaining Block Parameter Values with mdlRTW” on page
10-29.

It is important to ensure that driver.c does not attempt to read or write
memory locations that are intended to be used in the target hardware
environment. The real-time driver implementation, generated with a
driver.tlc file, should access the target hardware.

• driver.mexext : MEX-file built from your C MEX S-function source code.
The filename extension mexext varies depending on the platform. For
example, on 32-bit Windows, the extension is .mexw32.

This component is used:

- In simulation: Simulink calls the simulation versions of the required
functions

- During code generation: If a mdlRTW function exists in the MEX-file, the
code generator executes it to write parameter data to the model.rtw file.

• driver.tlc: TLC functions that generate real-time implementations of the
functions required by the S-function API.

10-26

Inlining the S-Function Device Driver

• Hardware support files: Header files, macro definitions, or code libraries
that may be provided with your I/O devices or cross-development system.
It may be necessary to generate #include statements or other directives
required for using such support files. See “Generating Target-Specific
Compiler Directives” on page 10-28 for information on how to generate
these directives.

Inlined Device Driver Operations
Typical operations performed by an inlined device driver include

• Initializing the I/O device. For example, the driver may need to write
specific values to one or more control registers to set the device into a
desired mode of operation.

• Calculating the block outputs. How this is done depends upon the type of
driver being implemented:

- An input driver for a device such as an ADC usually reads values from
an I/O device and assigns these values to the block’s output vector y.

- An output driver for a device such as a DAC usually writes values from
the block’s input vector u to an I/O device.

• Terminating the program. This may require setting hardware to a “neutral”
state; for example, zeroing DAC outputs.

In generated code, these operations are usually executed within the
standard model functions, such as model_initialize, model_step, and
model_terminate.

Inlining the Example ADC Driver
As an aid to understanding the process of inlining a device driver, this section
describes the TLC implementation of the ADC_examp driver. Full TLC source
code for ADC_examp.tlc is provided in the directory

matlabroot/toolbox/rtw/targets/common/examples/ADC_driver_example

10-27

10 Developing Device Drivers for Embedded Targets

The TLC implementation of the ADC_examp driver is somewhat simpler than
the simulation code. It contains only three TLC functions:

• The Start function generates code that is inlined into the
model_initialize function. The code initializes several control registers
of the HC12 ADC device.

• The Outputs function generates code that is inlined into the model_step
function. The code reads data from one or more ADC channels. The data is
assigned to the block outputs.

• The BlockTypeSetup function generates #include directives and symbol
definitions for use with the Metrowerks CodeWarrior compiler for the
Freescale™ HC12.

Generating Target-Specific Compiler Directives
Device driver code often references target-specific symbols that are defined
externally to the generated code. These symbols represent specific hardware
registers, memory addresses, or operating system functions. For example,
the Start and Outputs functions described above generate code to read and
write various HC12 ADC registers.

These are typically defined in header files provided by the vendor of the target
hardware or the cross-development system that compiles the generated code.

Such references are resolved by generating compiler directives (such as
#include or #define statements). These directives can be generated:

• By the device driver block itself. This is often done in the BlockTypeSetup
function of the driver TLC implementation. (See the discussion of the
ADC_Examp example below.)

• By a “master” device driver block. Some targets (such as Target for
Freescale™ MPC5xx) implement a master block that manages hardware
resources for multiple drivers. Such targets require inclusion of the master
block in the model. Accordingly, the BlockTypeSetup function for the
master block can generate the includes required by all the other blocks.

10-28

Inlining the S-Function Device Driver

Example BlockTypeSetup Function. The ADC_Examp driver implements
a BlockTypeSetup function that illustrates one possible approach to the
generation of compiler directives for a particular cross-development system.
This BlockTypeSetup function generates only #include statements and
symbol definitions. The generated code is written to the model_private.h
function.

The generated directives are intended for use with the Metrowerks
CodeWarrior compiler for the Freescale™ HC12 (Version 2.0 or 1.2). The
included header files define all the symbols required to compile code generated
by ADC_Examp.tlc when included in a Metrowerks CodeWarrior project.

The BlockTypeSetup function uses the recommended caching function
(LibCacheIncludes) for generating #include statements. For details, see the
following sections in the Real-Time Workshop Target Language Compiler
document:

• “TLC Function Library Reference” describes the use of the
LibCacheIncludes function.

• “Block Functions” describes the BlockTypeSetup function in general.

Passing and Obtaining Block Parameter Values with mdlRTW
The driver S-function (ADC_examp.c) implements a mdlRTW function to pass
user-entered parameter values (ADC bank, Channels, ADC resolution,
and Word alignment) to the model.rtw file.

The mdlRTW function is a mechanism by which a C-MEX S-function can
generate and write data structures to the model.rtw file. The Target
Language Compiler, in turn, uses these data structures when generating code.
The simplest application of mdlRTW is to pass block parameter data into the
model.rtw file. However, mdlRTW also lets you compute virtually any useful
data and pass it into the model.rtw file.

Unlike the other functions in a simulation driver, mdlRTW executes at code
generation time. The mdlRTW mechanism is fully described in the “Writing
S-Functions for Real-Time Workshop” chapter of the Real-Time Workshop
documentation. This section shows the use of mdlRTW in the ADC_examp device
driver.

10-29

10 Developing Device Drivers for Embedded Targets

The mdlRTW function in ADC_examp.c obtains user-entered parameter
values using the symbol and macro definitions described in “Macro and
Symbol Definitions for ADC_examp.c” on page 10-9. It then generates a
structure that contains these values in the model.rtw file. Macros (such as
SSWRITE_VALUE_DTYPE_NUM) are defined for this purpose. These macros are
described in the Simulink Writing S-Functions document.

The mdlRTW function from ADC_examp.c is listed below.

static void mdlRTW(SimStruct *S)

{

uint8_T atdbank = (uint8_T) ATDBANK(S);

uint16_T *channels = (uint16_T *) mxGetData(CHANNELARRAY_ARG(S));

uint8_T use10BitRes = (uint8_T) USE10BITS(S);

uint8_T leftjustify = (uint8_T) LEFTJUSTIFY(S);

/* Write out parameters for this block.*/

if (!ssWriteRTWParamSettings(S, 4,

SSWRITE_VALUE_DTYPE_NUM,"ATDBank",

&atdbank,DTINFO(SS_UINT8, COMPLEX_NO),

SSWRITE_VALUE_DTYPE_VECT, "Channels",

channels,

mxGetNumberOfElements(CHANNELARRAY_ARG(S)),

DTINFO(SS_UINT16, COMPLEX_NO),

SSWRITE_VALUE_DTYPE_NUM,"Use10BitRes",

&use10BitRes,DTINFO(SS_UINT8, COMPLEX_NO),

SSWRITE_VALUE_DTYPE_NUM,"LeftJustify",

&leftjustify,DTINFO(SS_UINT8, COMPLEX_NO)

)) {

return; /* An error occurred which will be reported by SL */

}

}

10-30

Inlining the S-Function Device Driver

A typical model.rtw structure generated by this mdlRTW function is

SFcnParamSettings {
ATDBank 1U
Channels [0U]
Use10BitRes 0U
LeftJustify 1U
}

The field values of SFcnParamSettings derive from data that you enter.

Values stored in the SFcnParamSettings structure are referenced in the TLC
block implementation, as in the following code excerpt:

%assign Use10BitResolution = CAST("Number",SFcnParamSettings.Use10BitRes)

%assign LeftJustify = CAST("Number",SFcnParamSettings.LeftJustify)

See “Start Function” on page 10-31 below, and the ADC_examp.tlc code,
for further examples of how the SFcnParamSettings structure is used to
generate code for the driver block.

Note During code generation, Real-Time Workshop writes run-time
parameters automatically to the model.rtw file, eliminating the need for
an S-function to perform this task with a mdlRTW method. However, these
run-time parameters are always tunable. Generally, it is not appropriate
for device driver parameters to be tunable. Thus, the need to use the more
lengthy approach of using the S-function parameter settings for device
drivers. See the discussion of run-time parameters in the Simulink Writing
S-Functions document for further information.

Start Function
The purpose of the Start function, in the TLC file ADC_examp.tlc, is to
generate code that initializes several 8-bit control registers of the HC12 ADC
device. Each ADC bank (0 or 1) has a separate set of control registers. The
bank number is the only variable. Regardless of which bank is selected, the
same set of registers is initialized to the same set of bit values.

10-31

10 Developing Device Drivers for Embedded Targets

The symbolic naming convention for these registers is

ATDbCTLr

where b is the user-selected ADC bank and r is a register number. For
example, ATD0CTL1 represents bank 0, control register 1.

The Start function obtains the value for b from the SFcnParamSettings
structure (see “Passing and Obtaining Block Parameter Values with mdlRTW”
on page 10-29) and uses the returned value in a string substitution, as in
the following code excerpt.

%assign atdBank = CAST("Number",SFcnParamSettings.ATDBank)
...

ATD%<atdBank>CTL2 = 0x80;

For bank 1, this would generate the following statement in the
model_initialize function.

ATD1CTL2 = 0x80;

Note also that the Start function generates extensive comments in the code,
documenting each register bit setting. A block comment is also generated. You
should follow this practice.

Outputs Function
The Outputs function generates code that repeats the same operations (as
inlined code) for all selected ADC channels on the selected ADC bank. For
each channel (channelIdx):

• A data conversion is initiated by setting the appropriate channel bits
(channelIdx) on ADC control register 5. As in the Start function, the bank
parameter is substituted into the register symbol.

(ATD%<atdBank>CTL5)

The resultant code, for bank 1, channel 0, is

/* Start conversions on selected ADC channels */
ATD1CTL5 = 0x80;

10-32

Inlining the S-Function Device Driver

• The driver continually checks a status register until a conversion
completion flag is asserted. The status register symbol is generated by
concatenating the current channelIdx and bank parameters.

(CCF%<channelIdx>_%<atdBank>)

The resultant code, for bank 1, channel 0, is

while (CCF0_1 & 0) {
/* Wait for Conversion Complete Flag (CCFx)
* for a conversion on this channel.
/*

}

• When conversion completes, data is read from a data register for the
current bank and channel. Again the register symbol is formed by string
substitution of the current channelIdx and bank parameters.

ATD%<atdBank>DR%<channelIdx>;

The data read from the register is cast to the required data size and
left-shifted (justified) if required. The result is assigned to the block output.

The code generated for each channel consists of a single line. For example,
for the case where 10 bit resolution with left justification is selected.

/* 10-bit resolution */
/* Left-justified ADC result */
ADC_examp_model_B.ADC_out = (uint16_T) ATD1DR0 << 6;

10-33

10 Developing Device Drivers for Embedded Targets

Creating Device Drivers with the S-Function Builder
• “Overview” on page 10-34

• “Example Device Driver Specification” on page 10-35

• “Building the MEX-File” on page 10-36

• “Binding the MEX-File to an S-Function Block” on page 10-38

• “Masking the Block” on page 10-39

• “Customizing Driver Code Generation” on page 10-40

Overview
Traditionally, device drivers used with Simulink and Real-Time Workshop
Embedded Coder have relied on a dual implementation. For simulation use,
you write a device driver block as a Simulink S-function. You also must write
a TLC file for inlined code generation purposes.

During simulation, Simulink requires a MEX-file (for example, a .mexw32 file
on 32-bit Windows) for an S-function. This MEX-file must provide information
such as:

• Number of input signals

• Data types of input signals

• Number of output signals

• Data types of output signals

• Number of parameters for the block

• Data types of parameters

During simulation, the block should provide outputs even if the value is
trivial (such as 0 or 1). Assuming the output device is designed so that it has
an output signal (in simulation), the appropriate output signal should be
provided by the S-function MEX-file.

10-34

Creating Device Drivers with the S-Function Builder

Defining the correct simulation output for a device driver block is beyond
the scope of this discussion. The focus of this discussion is how to create
driver blocks for the purpose of generating code with Real-Time Workshop
Embedded Coder.

To create a MEX-file for your S-function, you can

• Write the S-function manually. The Simulink Writing S-Functions
document covers this topic.

• Use the Simulink S-Function Builder as a shortcut. If you have little
experience in writing S-functions, you should use the S-Function Builder.

This documentation describes the S-Function Builder in sufficient detail
for you to get started building device drivers. For a full description of the
S-Function Builder, see “Building S-Functions Automatically” in the Simulink
documentation.

Currently, the S-Function Builder does not support a device driver mode.
Consequently, device driver code resulting from its use may be less optimized
than S-function driver code written by hand. Also, since the S-Function
Builder supports only a subset of the S-function API, driver code that you
produce with the S-Function Builder may lack some desired features.

In the following sections, you create a simple device driver S-function using
the S-Function Builder.

Example Device Driver Specification
The driver, mypwm, supports one channel of pulse width modulation (PWM)
output. The period of the output signal is fixed. The block has one input,
which accepts an 8-bit (type uint8) modulator signal. The duty cycle of the
PWM output signal is proportional to the input signal. The hardware address
of the input port is 0x18h and is to be symbolically defined in generated
code as PORTA.

10-35

10 Developing Device Drivers for Embedded Targets

Building the MEX-File
The first task is to specify the signals and other properties of the driver, and
to generate a MEX-file component:

1 Create a new Simulink model.

2 Copy an instance of the S-Function Builder block from the Simulink
User-Defined Functions library into the new model. Open the Simulink
Library Browser.

3 Double-click the block to open the S-Function Builder dialog box.

4 Enter the name of the S-function, mypwm, in the S-function name field.

5 Select the Initialization pane. Make sure that all numeric parameters are
set to their defaults (zero) and that Sample mode is set to Inherited.

6 Select the Data Properties pane.

7 In the Port and Parameter properties pane, select Input ports. Specify
the input (PWM modulator) port as follows:

• Port name: u0

• Data type: uint8

• Other properties: use defaults

8 Still in the Port and Parameter properties pane, select Output ports.
Specify the output (PWM signal) port as follows:

• Port name: y0

• Data type: uint8

• Other properties: use defaults

10-36

Creating Device Drivers with the S-Function Builder

Note By default, the Port and Parameter properties pane specifies
one input and one output port. However, many device drivers require
only an input port or only an output port. For example, an input driver
for an analog-to-digital converter requires only an output. In such
cases, you should select the port that is not needed in the Port and
Parameter properties pane and delete it.

9 Leave all fields under the Parameters tab blank. In a real-world driver,
you might parameterize hardware settings or other options and add them
to your block’s mask. For simplicity, this example assumes no parameters
are used.

10 Leave the Libraries pane unchanged. The driver does not refer to any
external source or object files.

11 Select the Outputs pane and insert a line of C code.

y0[0] = u0[0];

This allows the input signal to pass through this block unchanged during
simulation.

12 Do not place any additional code under the Continuous Derivatives
or Discrete Update panes.

13 Select the Build Info pane. Make sure the Generate wrapper TLC
option is selected. All other options should be deselected.

14 Click Build. The S-function Builder generates several files in your working
directory. The names of the generated files are displayed in the Build Info
pane. Two of them are of interest to us later on:

• mypwm.mexext: MEX-file component for use in simulation (mexext is a
platform-dependent file extension, such as .mexw32 on 32-bit Windows).

• mypwm.tlc: TLC code for generating wrapper S-function.

10-37

10 Developing Device Drivers for Embedded Targets

15 Deselect the Generate wrapper TLC option. You edit the generated TLC
file, and do not regenerate the TLC file and overwrite edited code.

16 Close the S-Function Builder.

17 Save your model.

Binding the MEX-File to an S-Function Block
In this section you create a binding between the previously created MEX-file
and a standard Simulink S-function block:

1 Copy an instance of the S-Function block from the Simulink User-Defined
Functions library into your model.

2 Double-click on the S-Function block to open its dialog box. Enter mypwm
as the S-Function name property.

3 Click Apply and close the dialog box.

4 Label the S-Function block pwm driver.

5 Save the model.

In developing a real-world driver, you would place the pwm driver S-Function
block into your own drivers library. It is also good practice to keep S-Function
blocks that link to generated MEX-files (such as pwm driver) separate from
the S-Function Builder blocks that generated them. This avoids the possibility
that an end user could modify the behavior of this block and generate code
unintentionally.

Generated driver MEX-files should be stored in a directory on the MATLAB
path along with your other target files.

10-38

Creating Device Drivers with the S-Function Builder

Masking the Block
In this section you embed the pwm driver S-Function block in a masked
subsystem. This is useful if simulation and/or code generation parameters
are to be added to the driver later:

1 Click on the pwm driver block.

2 Select Create subsystem from the Edit menu in the model window. pwm
driver is now encapsulated in a subsystem.

3 Right-click on the subsystem and select Mask subsystem from the context
menu. The Mask Editor window opens.

4 In the Icon pane, add drawing commands.

disp('MYPWM')
port_label('input',1,'Duty cycle')

5 Right-click on the subsystem and select Look under mask from the
context menu. You now apply a mask to the underlying S-Function block.

6 Right-click on the S-Function block and select Mask S-function from the
context menu. The Mask Editor window opens.

7 In the Mask Initialization pane, add the following code.

s = struct('port','PORTA');
set_param(gcb,'RTWData',s);

This code extracts mask data (the symbolic port name, PORTA) into a
structure that is written into the RTWData structure of the model.rtw file
during code generation. This data is then available for use by the TLC file
that generates code for the driver block. (See the “Writing S-Functions for
Real-Time Workshop” chapter in the Real-Time Workshop documentation for
further information on using RTWData.)

10-39

10 Developing Device Drivers for Embedded Targets

Customizing Driver Code Generation
When the mypwm was built, the Generate wrapper TLC option was selected.
In this section, you generate code using the TLC file (mypwm.tlc) generated
by the S-Function Builder. You also examine the TLC file and the C code it
produces, and make changes. To exercise the underlying TLC file and inspect
code generation as it progresses, you create a test model test_mypwm. You
then modify the TLC code to generate C code that would be appropriate to an
actual hardware PWM driver:

1 Create a new model containing the PWM driver subsystem, with a
Constant block and a terminator, as shown in the figure below. Set the
Constant value to 50. In an actual PWM driver, this would generate a
pulse signal with a duty cycle of 50%.

2 Save the model as test_mypwm.

3 On the Solver pane of the Configuration Parameters dialog box, set Solver
options to

• Type: Fixed-Step, discrete (no continuous states)

• Fixed-step size: 0.01

4 On the Target Configuration section of the Real-Time Workshop pane
of the Configuration Parameters dialog box:

• Select the Real-Time Workshop Embedded Coder target (ert.tlc).

• Select the Generate code only option.

5 On the TLC debugging section of the Real-Time Workshop pane of the
Configuration Parameters dialog box, select the Retain .rtw file option.

6 Save the model.

10-40

Creating Device Drivers with the S-Function Builder

7 Click the Generate code button.

Real-Time Workshop generates C code for the model, as well as the .rtw
file. You now examine information related to the mypwm device driver in the
test_mypwm.rtw file.

8 The test_mypwm.rtw file is stored in the build directory. Open
test_mypwm.rtw into the MATLAB editor.

9 Search for rtwdata. For the PWM driver S-Function block you find

Block {
Type "S-Function"
InMask yes
MaskType ""
BlockIdx [0, 0, 1]
ExprCommentInfo {

SysIdxList []
BlkIdxList []

}
ExprCommentSrcIdx {

SysIdx -1
BlkIdx -1

}
RTWdata {

port "PORTA"
}
Name "<S1>/pwm driver1"
Identifier pwm_driver1
TID 0
RollRegions [0]
NumDataInputPorts 1
DataInputPort {

SignalSrc [C0]
DataTypeIdx 3
RollRegions [0]

}

10-41

10 Developing Device Drivers for Embedded Targets

You can access the RTWdata information from the block as follows:

%assign someData = %<Block.RTWdata.port>

With this information, focus on the mypwm.tlc file that was generated by
the S-Function Builder. The code excerpt below lists the entire file, except
for comments.

%function BlockTypeSetup(block, system) Output
%openfile externs
extern void mypwm_Outputs_wrapper(const uint8_T *u0,

uint8_T *y0);
%closefile externs
%<LibCacheExtern(externs)>
%%

%endfunction

%% Function: Outputs =================================
%%
%% Purpose:
%% Code generation rules for mdlOutputs function.
%%
%function Outputs(block, system) Output

/* S-Function "mypwm_wrapper" Block: %<Name> */

%assign pu = LibBlockInputSignalAddr(0, "", "", 0)
%assign py = LibBlockOutputSignalAddr(0, "", "", 0)
%assign py_width = LibBlockOutputSignalWidth(0)
%assign pu_width = LibBlockOutputSignalWidth(0)
mypwm_Outputs_wrapper(%<pu>, %<py>);

%%
%endfunction

%% [EOF] mypwm.tlc

10-42

Creating Device Drivers with the S-Function Builder

For device drivers, this BlockTypeSetup section is inadequate. Replace the
BlockTypeSetup section with the following BlockTypeSetup function, which
contains a port address from the hypothetical target hardware.

%function BlockTypeSetup(block, system) Output
%openfile defines

#ifndef _MYPWM_
/* This is a dummy address that you will replace with a
* meaningful address or declaration suitable for your
* hardware.
*/

define %<block.RTWdata.port> 0x18h
define _MYPWM_

%closefile defines
%<LibCacheDefine(defines)>
%%

%endfunction

Here you do not import an external C file as the original “wrapper” style
TLC code was doing. Instead, you introduce a #define relevant to our
particular hardware. Of course, this is an optional statement and could be
placed elsewhere. Another likely usage would be to modify the above code to
include a header file that defines a number of registers or ports by a variety
of PWM devices.

If you regenerate code using the modified mypwm.tlc, the following code is
generated into the file test_mypwm_private.h.

#ifndef _MYPWM_
/* This is a dummy address that you will replace with a
* meaningful address or declaration suitable for your
* hardware
*/

define PORTA 0x18h
define _MYPWM_
#endif

10-43

10 Developing Device Drivers for Embedded Targets

Note that the generated TLC file does not include a Start section. You can
add your own start section.

%% Function: Start =======================================
%function Start(block, system) Output
/* Here you would introduce any additional lines of
code needed to initialize this device for your hardware.
For example, you could initialize the period of the PWM
device, its initial output, polarity, and so on.

One obvious illustration could be just setting the initial
duty to zero as shown below:
*/

%<block.RTWdata.port> = 0x00h;

%endfunction

Now, look at the Outputs section. The portion of this code generated by
S-Function Builder is

%function Outputs(block, system) Output
/* S-Function "mypwm_wrapper" Block: %<Name> */

%assign pu = LibBlockInputSignalAddr(0, "", "", 0)
%assign py = LibBlockOutputSignalAddr(0, "", "", 0)
%assign py_width = LibBlockOutputSignalWidth(0)
%assign pu_width = LibBlockOutputSignalWidth(0)
mypwm_Outputs_wrapper(%<pu>, %<py>);

%%
%endfunction

10-44

Creating Device Drivers with the S-Function Builder

Rather than calling a function named mypwm_Outputs_wrapper, you want
your driver code to directly inline the code that implements our PWM driver.
During the model outputs computation, this code only needs to translate the
input signal u to the PWM duty cycle. In this case, change the TLC code to

%% Function: Outputs =================================
%%
%% Purpose:
%% Code generation rules for mdlOutputs function.
%%
%function Outputs(block, system) Output

/* S-Function PWM Block: %<Name> */

%assign u = LibBlockInputSignal(0, "", "", 0)
%<block.RTWdata.port> = %<u>;

%%
%endfunction

%% [EOF] mypwm.tlc

The resulting generated code is shown in the model step function of
test_mypwm.c as follows.

/* Model step function */
void test_mypwm_step(void)
{

/* S-Function PWM Block: <S1>/pwm driver1 */

PORTA = test_mypwm_P.Constant_Value;

/* (no update code required) */

}

10-45

10 Developing Device Drivers for Embedded Targets

Device Drivers in Simulation
• “Introduction” on page 10-46

• “Multiple-Model Approach” on page 10-46

• “Single-Model Approach” on page 10-51

Introduction
When designing device driver blocks, it is important to consider the role of
your drivers in both simulation and code generation. This section discusses
two approaches to the use of device drivers in simulation and code generation.

If you intend to use your drivers only in the code generation and deployment
stages of your development process, you can use separate models for
simulation and code generation. This multiple-model approach has a number
of advantages. For reasons discussed in “Multiple-Model Approach” on page
10-46, this is the recommended approach.

If your driver blocks are used in simulation as well as in code generation,
you may want to use a single-model approach, which may require that your
driver blocks implement special behaviors (such as passing through their
input signals) during simulation. This approach is discussed in “Single-Model
Approach” on page 10-51.

Multiple-Model Approach
In many applications, it is possible to separate target-specific functions (for
example, device drivers or signal conditioning) from the algorithm embodied
by the model (for example, a controller). If the algorithmic part of the model
can be encapsulated in a common subsystem, it becomes relatively simple to
implement two separate models for simulation and code generation. Each
model contains the common subsystem, but only the code generation model
contains target-specific functions.

Advantages of the multiple-model approach include:

• There is no need to implement special simulation behaviors (such as use of
simulation-only pass-through ports) in the device driver blocks. Real-world

10-46

Device Drivers in Simulation

scaling and signal conditioning functions can be confined to the code
generation model, and omitted from the simulation model.

• Conceptual clarity: Each model operates in a single mode (either simulation
or code generation), but reuses components. The purpose of each model is
clear to users. In addition, since device driver blocks are not instrumented
with pass-through ports, their input/output functions are easier for users to
understand.

• Any existing driver can be used without modification in the code generation
model.

• Users are free to develop their plant and controller algorithms, without
concern over hard-coded pass-through behavior of driver blocks.

• Increased flexibility for the end user: Code generation can be retargeted to
different processors by replacing the driver blocks.

• Optimal code generation: Avoids inefficiencies that can occur in code
generation when using a single-model approach.

For example, consider a multiple-model approach to a plant/controller system.
One model performs a closed-loop simulation of a plant and controller. A
second model, used for code generation only, includes the same controller and
the I/O device drivers. Code generated from the second model allows the
controller to be used in real time on a particular hardware target.

The models shown in this section illustrate this approach. These models were
adapted from the Simulink/Stateflow Fault-Tolerant Fuel Control System
demo.

10-47

10 Developing Device Drivers for Embedded Targets

Multiple-Model Approach: Plant Model for Simulation

The preceding figure shows the simulation version of this model. The
controller algorithm (Fuel Rate Controller subsystem) is implemented as
a library block. Simulated inputs and outputs to and from the controller
are entirely independent of any hardware target to which the model might
eventually be deployed.

Multiple-Model Approach: Code Generation Model

The preceding figure shows a separate version of the model that is specifically
targeted for code generation for the Freescale™ MPC555 processor. This
model contains the same controller block, but the controller is connected

10-48

Device Drivers in Simulation

to MPC555 I/O device drivers (Analog In and PWM Out). The model also
contains blocks required for correct operation on the target hardware. These
include data type conversion, scaling, and normalization blocks, and an
MPC555 Resource Configuration block.

The drivers shown are supplied with Target for Freescale™ MPC5xx. Code
generation could be retargeted to another processor relatively simply by
replacing the driver blocks, for example with drivers from Target for Infineon
C166®.

10-49

10 Developing Device Drivers for Embedded Targets

Multiple-Model Approach: Project Library
The multiple-model approach can become problematic if changes are
introduced in one model without changing the other. In the example shown,
this problem is minimized because the controller algorithm has been extracted
into a library block that is used in both models, as shown in the next figure.

The simulation and code generation models have been bundled into a project
library, together with the common controller, An alternative would be to
implement the controller as a separate model, and reference it with a Model
block.

10-50

Device Drivers in Simulation

Single-Model Approach
The single-model approach employs the same model for simulation and for
code generation. Traditional input simulation drivers generate a nominal
value (usually 0), or simply do nothing. Traditional output simulation drivers
act as sinks and can often be implemented as stubs.

If you need your drivers to play an active role in a closed-loop simulation,
you can implement pass-through behavior in your simulation drivers.
Pass-through is an option that lets you provide an output signal from your
drivers during simulation. In the simplest case, a pass-through device driver
block behaves like a “wire,” passing its input signal straight through to
the output, without any processing. It is also possible to apply scaling or
saturation or dynamics processing to the signal as it passes through the block.

Pass-through device drivers resemble traditional device drivers in that the
driver behaves differently in simulation than it does when executed on target
hardware. However, unlike a traditional simulation driver, a pass-through
driver receives and outputs a signal that is significant during simulation.

The following sections describe several approaches to implementation of
pass-through behavior device drivers, including possible inefficiencies that
may occur in generated code.

It is assumed that the device drivers discussed below are functioning within a
subsystem (for example, a controller subsystem in a plant/controller model)
and that subsystem code is generated with the right-click Build Subsystem
menu option.

Coding Pass-Through Behavior in mdlOutputs
A “traditional” approach implementing pass-through behavior in a simulation
driver is to code the pass-through functionality directly into the mdlOutputs
function of the driver S-function. This is the approach taken in the ADC_examp
driver. See “mdlOutputs” on page 10-14 for a listing and discussion of the code.

10-51

10 Developing Device Drivers for Embedded Targets

Using the Environment Controller Block for Pass-Through
The Environment Controller block (included in the Simulink Signal Routing
block library) provides a simple way to implement pass-through drivers. The
Environment Controller has two inputs, labeled Sim and RTW, and a single
output.

Environment Controller Block

When a simulation is running, the Environment Controller block routes the
Sim input signal to the output. During code generation, the block generates
code that effectively routes the RTW input signal to the output.

You can implement a pass-through driver by creating a subsystem like that
shown in Subsystem Implements Pass-Through Logic with Environment
Controller on page 10-52. The subsystem contains an S-function device driver
block (for an input device such as an ADC), and an Environment Controller
block that implements pass-through behavior.

Subsystem Implements Pass-Through Logic with Environment Controller

When the model containing this subsystem is in code generation state,
the device driver block connected to the RTW input is active, and the path
connecting the Sim input to the Environment Controller block output port
is effectively dead. This path is removed from the generated code by the
Real-Time Workshop dead-path elimination optimization.

10-52

Device Drivers in Simulation

When the model is in simulation state, the path from the RTW input is turned
off. The path from the Sim input to the output becomes active. This bypasses
the device driver block. In this case, the subsystem behaves as though it is a
unity gain, passing signals through without change.

Disadvantages of the Environment Controller Block for Pass-Through.
When using the Environment Controller block approach to pass-through, a
number of inefficiencies can arise in generated code:

• A Switch block underlies the Environment Controller block. In code
generation, it is desirable to optimize the Switch block (and any blocks on
the unused Switch input) out of the code. This optimization requires that
you turn on both the Block Reduction and Inline Parameters options.
These options may not be suitable for your application (for example, if you
require all parameters to be tunable).

• If the driver subsystem is built with the right-click Build Subsystem
menu option, storage for inputs and outputs to and from the subsystem is
declared in the containing model’s external input (rtU) and output (rtY)
structures.

For example, in the subsystem shown in Subsystem Implements
Pass-Through Logic with Environment Controller on page 10-52, storage
would be allocated for the port labeled Simulation_Input.

• Output (rtY) assignments are generated in the model_step function.

Using a Configurable Subsystem Block for Pass-Through
Another way to implement a pass-through feature is to use a Configurable
Subsystem block that includes logic to select either a simulation or code
generation version of a device driver.

To do this, a library is constructed, containing both versions of the driver and
a master Configurable Subsystem block. The figure below shows a library
containing two versions of an ADC driver block:

• The Simulation block has both an input and an output port; its mdlOutputs
function simply copies the input to the output.

• The CodeGeneration block has only an output port.

10-53

10 Developing Device Drivers for Embedded Targets

The block labeled ADC is a Configurable Subsystem block that is configured
to select either Simulation or CodeGeneration.

Rather than using the conventional manual selection method (the
Configurable Subsystem’s Block Choice context menu), the ADC Configurable
Subsystem block has mask initialization code that makes the selection
automatically, depending on whether the model is in simulation or code
generation mode. The mask initialization code is listed below.

path = rtwenvironmentmode(bdroot);
cssblk = gcb;
if path

disp('Taking simulation path')
set_param(cssblk,'BlockChoice','Simulation');

else
disp('Taking rtw path')
set_param(cssblk,'BlockChoice','CodeGeneration');

end
disp(get_param(cssblk,'BlockChoice'))

The following block diagram shows a subsystem that includes both the ADC
Configurable Subsystem block functioning as an input driver, and a similar
Configurable Subsystem block (PWM) functioning as an output driver.

10-54

Device Drivers in Simulation

Disadvantages of the Configurable Subsystem Block for
Pass-Through. When using the Configurable Subsystem block approach to
pass-through, a number of inefficiencies can arise in generated code:

• If the driver subsystem is built with the right-click Build Subsystem
menu option, storage for inputs and outputs to and from the subsystem is
declared in the model’s external input (rtU) and output (rtY) structures.

• Output (rtY) assignments are generated in the model_step function.
These can be eliminated by turning on the Inline Parameters option, but
inlining parameters may not be suitable for your application.

10-55

10 Developing Device Drivers for Embedded Targets

10-56

Index

IndexB
build process

COM automation of 9-11
flowchart 3-11
interfacing to development tools

integrated development
environments 9-4

make utilities 9-3
passing information in 3-16
phases of 3-9

C
code generation

TLC variables for 5-9
custom target

components of 3-2
application 3-3
code 3-3
control files 3-5
device drivers 3-5
interrupt service routines 3-4
main program 3-4
run-time interface 3-3

purpose of 2-2
custom target configuration

tutorial 5-38

D
development environments

supporting multiple 5-36
device driver blocks

building 10-25
implementing as S-functions 10-2
in simulation 10-46

multiple-model approach 10-46
pass-through behavior 10-51

inlined 10-26
example 10-27
mdlRTW function in 10-34
when to inline 10-4

noninlined 10-6
required defines and includes 10-7
required functions 10-8

displaying target options 5-28

H
hook files

STF_make_rtw_hook 4-13
STF_wrap_make_cmd_hook 4-14

I
interrupt service routine (ISR) 3-4

M
make command 6-8
MATLAB application data 3-18
mdlRTW function 10-34
Model referencing, support for 7-1

R
recommended target features 2-6
rtwgensettings structure 5-19
rtwoptions structure

callbacks in 5-17
example of 5-13
fields in 5-14
overview of 5-12

S
S-function Builder

implementing device drivers with 10-34
Start button menu

Index-1

Index

info.xml file for 4-17
system target file (STF)

customization techniques 5-31
defining target options in 5-11
header comments section 5-7
location of 5-3
naming conventions for 5-3
overview of 5-2
Release 14 or later compatibility issues 5-22

callback conversion API 5-23
rtwoptions callbacks 5-22
target options display 5-28
target options inheritance 5-26

RTW_OPTIONS section 5-11
rtwgensettings structure 5-19
structure of 5-4
target options inheritance mechanism 5-35
TLC entry point in 5-10
TLC variables section 5-9

system target file creation
tutorial 5-38

T
target directories

blocks directory 4-6
central directory 4-6
development tool support files in 4-9
for common source files 4-10
for target preferences classes 4-10
location on MATLAB path 4-4
naming conventions 4-3
structure of 4-4

target root 3-2
target root directory 4-6

target files
main.c 4-13
naming conventions 4-3
system target file (STF) 4-11
target settings file 4-12
template makefile (TMF) 4-12

Target Language Compiler
code generation variables 5-9

target options inheritance 5-26
mechanism for 5-35

target preferences
class methods 8-8
classes 8-2
creating preferences class 8-4
in build process 8-12
introduction to 8-2
objects 8-2
setup window 8-10
visibility in Start menu 8-10

target root directory 3-2
target types

baseline 2-3
cosimulation 2-4
turnkey 2-4

template makefile
structure of 6-2
tokens 6-2

tokens 6-2
tutorials

creating custom target configuration 5-38

Index-2

	toc
	Introduction
	Prerequisites
	Related Documentation
	Embedded Target Implementations to Study

	Overview of Embedded Target Development
	Introduction
	Types of Targets
	Introduction
	Baseline Targets
	Turnkey Production Targets
	HIL Simulation Targets
	PIL Cosimulation Targets

	Recommended Features for Embedded Targets
	Basic Target Features
	Integration with Target Development Environments
	Observing Execution of Target Code
	Deployment and Hardware Issues

	Target Development Mechanics
	Components of a Custom Target
	Overview
	Code Components
	Application Components
	Run-Time Interface Components
	User-Written Run-Time Interface Code

	Control Files
	Top-Level Control File (make_rtw)
	System Target File (STF)
	Template Makefile (TMF)
	Hook Files

	Understanding and Using the Build Process
	Introduction
	Build Process Phases and Information Passing
	Build Process Flowchart
	MATLAB Environment for Build Process
	Simulink and M-Code Environment for Build Process
	TLC and M-Code Environment Flowchart
	M-Code, model.bat, and Makefile Environment Flowchart

	Additional Information Passing Techniques
	tlcvariable Field in rtwoptions Structure
	makevariable Field in rtwoptions Structure
	Accessing Host Environment Variables
	Supplying Development Environment Information to Your Template M
	Using MATLAB Application Data
	Adding Block-Specific Information to the Makefile

	Target Directories, Paths, and Files
	Introduction
	Directory and File Naming Conventions
	Target Directory Structure and MATLAB Path
	Overview
	Adding Target Directories to the MATLAB Path
	Location of Target Directories

	Target Directories and Files
	Target Root Directory (mytarget)
	Target Directory (mytarget/mytarget)
	Target Block Directory (mytarget/blocks)
	mytarget/blocks/slblocks.m
	Example slblocks.m File
	mytarget/blocks/demos.xml
	Example demos.xml File

	Development Tools Directory (mytarget/dev_tool1, mytarget/dev_to
	Target Preferences Directory (mytarget/mytarget/@mytarget)
	Target Source Code Directory (mytarget/src)

	Files in the Target Directory
	mytarget.tlc
	mytarget.tmf
	mytarget_default_tmf.m
	mytarget_settings.tlc
	mytarget_genfiles.tlc
	mytarget_main.c
	STF_make_rtw_hook.m
	STF_wrap_make_cmd_hook.m
	Stub makefiles
	STF_wrap_make_cmd_hook Mechanism
	Example STF_wrap_make_cmd_hook Function

	STF_rtw_info_hook.m (obsolete)
	info.xml
	Example info.xml File

	mytarget_overview.html
	Example mytarget_overview.html File

	Additional Directories and Files for Externally Developed Target
	mytarget/mytarget/mytarget_setup.m
	mytarget/mytarget/doc

	System Target Files
	Introduction
	System Target File Naming and Location Conventions
	System Target File Structure
	Overview
	Header Comments
	TLC Configuration Variables
	TLC Program Entry Point and Related %includes
	RTW_OPTIONS Section
	rtwoptions Structure
	Using rtwoptions: Real-Time Workshop Options Example Target

	rtwgensettings Structure
	Additional Code Generation Options
	Model Reference Considerations

	Defining and Displaying Custom Target Options
	Upgrading Custom Targets to Release 14 or Later
	Using rtwoptions Callbacks in Release 14 or Later
	How to Convert Your rtwOptions Callbacks
	Example Callback Code
	Operation of Targets with Unconverted Callbacks

	Target Options Inheritance in Release 14 or Later
	Target Options Display in Release 14 or Later

	Tips and Techniques for Customizing Your STF
	Introduction
	Required and Recommended %includes
	Using mytarget_settings.tlc
	Using mytarget_genfiles.tlc

	Inherited Target Options
	Handling Unsupported Options

	Supporting Multiple Development Environments

	Tutorial: Creating a Custom Target Configuration
	Introduction
	my_ert_target Overview
	Creating Target Directories
	Create ERT-Based STF
	Editing the STF
	Viewing the STF

	Create ERT-Based TMF
	Create Test Model and S-Function
	Verify Target Operation

	Template Makefiles
	Template Makefiles and Tokens
	Template Makefile Tokens

	make Command
	Make Utilities

	Structure of the Template Makefile
	Customizing and Creating Template Makefiles
	Introduction
	Setting Up a Template Makefile
	mytarget_default_tmf.m Example Code

	Using Macros and Pattern Matching Expressions in a Template Make
	Using rtwmakecfg Files to Customize the Makefile
	Creating the rtwmakecfg.m File
	Modifying the TMF

	Supporting Continuous Time in Custom Targets
	Template Makefile Modifications
	Modifications to Main Program Module

	Model Reference Considerations
	Generating Make Commands for Nondefault Compilers

	Supporting Model Referencing
	Overview
	System Target File Modifications
	Template Makefile Modifications
	Hook File Modifications
	Supporting the Shared Utilities Directory

	Using Target Preferences
	Introduction to Target Preferences
	Target Preferences Classes, Objects, and Properties

	Creating Your Target Preferences Class
	Target Preferences Class Methods
	Making Target Preferences Available to the End User
	Using Target Preferences in the Build Process
	Introduction
	Accessing Target Preference Data from MATLAB
	Accessing Target Preference Data from TLC

	Interfacing to Development Tools
	Introduction
	Makefile Approach
	Interfacing to an Integrated Development Environment
	Introduction
	Generating a CPP_REQ_DEFINES Header File
	Interfacing to the CodeWarrior IDE
	XML Project Import
	Build Process Automation

	Developing Device Drivers for Embedded Targets
	Overview
	Introduction
	Related Documentation
	Tradeoffs in Device Driver Development
	Hand Coding vs. S-Function Builder
	Inlined vs. Noninlined Drivers

	Example Device Driver

	Writing a Device Driver C-MEX S-Function
	Overview
	Required Defines and Include Files
	Other Preprocessor Symbols
	Functions Required by the S-Function API
	Macro and Symbol Definitions for ADC_examp.c
	mdlInitializeSizes
	mdlInitializeSizes for Output Drivers
	mdlInitializeSampleTimes
	mdlStart
	mdlOutputs
	mdlTerminate

	Creating a User Interface for Your Driver
	Using a Masked Device Driver Block
	Obtaining and Using a Scalar Parameter
	Obtaining and Using a Vector Parameter

	Building the MEX-File and the Driver Block
	Making Your Drivers Available to Users

	Inlining the S-Function Device Driver
	Code Components
	Inlined Device Driver Operations
	Inlining the Example ADC Driver
	Generating Target-Specific Compiler Directives
	Passing and Obtaining Block Parameter Values with mdlRTW
	Start Function
	Outputs Function

	Creating Device Drivers with the S-Function Builder
	Overview
	Example Device Driver Specification
	Building the MEX-File
	Binding the MEX-File to an S-Function Block
	Masking the Block
	Customizing Driver Code Generation

	Device Drivers in Simulation
	Introduction
	Multiple-Model Approach
	Multiple-Model Approach: Plant Model for Simulation
	Multiple-Model Approach: Code Generation Model
	Multiple-Model Approach: Project Library

	Single-Model Approach
	Coding Pass-Through Behavior in mdlOutputs
	Using the Environment Controller Block for Pass-Through
	Using a Configurable Subsystem Block for Pass-Through

	Index

	tables
	Run-Time Interface Components
	rtwoptions Structure Fields Summary
	Template Makefile Tokens Expanded by make_rtw
	Inherited Target Preferences Class Methods

